
Sourya Shrestha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5318363/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Health and Economic Benefits of Tests That Predict Future Progression to Tuberculosis Disease. Epidemiology, 2022, 33, 75-83.	1.2	2
2	Model-based Analysis of Tuberculosis Genotype Clusters in the United States Reveals High Degree of Heterogeneity in Transmission and State-level Differences Across California, Florida, New York, and Texas. Clinical Infectious Diseases, 2022, 75, 1433-1441.	2.9	2
3	Holistic Approach to Tuberculosis Detection, Treatment and Prevention: Emerging Evidence and Strategies from the Field. Tropical Medicine and Infectious Disease, 2022, 7, 36.	0.9	1
4	Changing Epidemiology of TB in Shandong, China Driven by Demographic Changes. Frontiers in Medicine, 2022, 9, 810382.	1.2	0
5	Optimal Social Distancing Policy for COVID-19 Control in Korea: A Model-Based Analysis. Journal of Korean Medical Science, 2022, 37, .	1.1	6
6	Model-based Cost-effectiveness of State-level Latent Tuberculosis Interventions in California, Florida, New York, and Texas. Clinical Infectious Diseases, 2021, 73, e3476-e3482.	2.9	20
7	The Epidemiological Importance of Subclinical Tuberculosis. A Critical Reappraisal. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 168-174.	2.5	87
8	Incorporating patient reporting patterns to evaluate spatially targeted TB interventions. Annals of Epidemiology, 2021, 54, 7-10.	0.9	2
9	Reply to Pierce: Subclinical Tuberculosis: Some Flies in the Ointment. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 1328-1329.	2.5	1
10	Quantifying geographic heterogeneity in TB incidence and the potential impact of geographically targeted interventions in South and North City Corporations of Dhaka, Bangladesh: a model-based study. Epidemiology and Infection, 2021, 149, e106.	1.0	5
11	Sub-district level correlation between tuberculosis notifications and socio-demographic factors in Dhaka City corporation, Bangladesh. Epidemiology and Infection, 2021, 149, .	1.0	3
12	Achieving a "step change―in the tuberculosis epidemic through comprehensive community-wide intervention: a model-based analysis. BMC Medicine, 2021, 19, 244.	2.3	9
13	Comparative Modeling of Tuberculosis Epidemiology and Policy Outcomes in California. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 356-365.	2.5	13
14	Policy Implications of Mathematical Modeling of Latent Tuberculosis Infection Testing and Treatment Strategies to Accelerate Tuberculosis Elimination. Public Health Reports, 2020, 135, 38S-43S.	1.3	2
15	Estimated Population-Level Impact of Using a Six-Week Regimen of Daily Rifapentine to Treat Latent Tuberculosis Infection in the United States. Annals of the American Thoracic Society, 2020, 17, 1639-1642.	1.5	2
16	Impact and Effectiveness of State-Level Tuberculosis Interventions in California, Florida, New York, and Texas: A Model-Based Analysis. American Journal of Epidemiology, 2019, 188, 1733-1741.	1.6	13
17	Spotting the old foe—revisiting the case definition for TB. Lancet Respiratory Medicine,the, 2019, 7, 199-201.	5.2	19
18	Spatially targeted screening to reduce tuberculosis transmission in high-incidence settings. Lancet Infectious Diseases, The, 2019, 19, e89-e95.	4.6	41

SOURYA SHRESTHA

#	Article	IF	CITATIONS
19	The Importance of Heterogeneity to the Epidemiology of Tuberculosis. Clinical Infectious Diseases, 2019, 69, 159-166.	2.9	68
20	Tuberculosis Incidence Among Populations at High Risk in California, Florida, New York, and Texas, 2011–2015. American Journal of Public Health, 2018, 108, S311-S314.	1.5	5
21	Modelling the impact of social protection on tuberculosis: the S-PROTECT project. BMC Public Health, 2018, 18, 786.	1.2	15
22	Comparing Drivers and Dynamics of Tuberculosis in California, Florida, New York, and Texas. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 1050-1059.	2.5	25
23	A Multistrain Mathematical Model To Investigate the Role of Pyrazinamide in the Emergence of Extensively Drug-Resistant Tuberculosis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	17
24	Mathematical Modeling of "Chronic―Infectious Diseases: Unpacking the Black Box. Open Forum Infectious Diseases, 2017, 4, ofx172.	0.4	12
25	Current and future trends in tuberculosis incidence in New York City: a dynamic modelling analysis. Lancet Public Health, The, 2017, 2, e323-e330.	4.7	12
26	Impact of Targeted Tuberculosis Vaccination Among a Mining Population in South Africa: A Model-Based Study. American Journal of Epidemiology, 2017, 186, 1362-1369.	1.6	13
27	Priority-Setting for Novel Drug Regimens to Treat Tuberculosis: An Epidemiologic Model. PLoS Medicine, 2017, 14, e1002202.	3.9	20
28	Potential impact of spatially targeted adult tuberculosis vaccine in Gujarat, India. Journal of the Royal Society Interface, 2016, 13, 20151016.	1.5	18
29	The role of influenza in the epidemiology of pneumonia. Scientific Reports, 2015, 5, 15314.	1.6	38
30	Mathematical Modelling and Tuberculosis: Advances in Diagnostics and Novel Therapies. Advances in Medicine, 2015, 2015, 1-10.	0.3	24
31	The Distribution of Fitness Costs of Resistance-Conferring Mutations Is a Key Determinant for the Future Burden of Drug-Resistant Tuberculosis: A Model-Based Analysis. Clinical Infectious Diseases, 2015, 61, S147-S154.	2.9	40
32	Drivers and Trajectories of Resistance to New First-Line Drug Regimens for Tuberculosis. Open Forum Infectious Diseases, 2014, 1, ofu073.	0.4	15
33	Evolution of acuteness in pathogen metapopulations: conflicts between "classical―and invasion-persistence trade-offs. Theoretical Ecology, 2014, 7, 299-311.	0.4	9
34	Time and dose-dependent risk of pneumococcal pneumonia following influenza: a model for within-host interaction between influenza and <i>Streptococcus pneumoniae</i> . Journal of the Royal Society Interface, 2013, 10, 20130233.	1.5	40
35	Interactions between serotypes of dengue highlight epidemiological impact of cross-immunity. Journal of the Royal Society Interface, 2013, 10, 20130414.	1.5	254
36	Identifying the Interaction Between Influenza and Pneumococcal Pneumonia Using Incidence Data. Science Translational Medicine, 2013, 5, 191ra84.	5.8	123

SOURYA SHRESTHA

#	Article	IF	CITATIONS
37	Influenza and Community-acquired Pneumonia Interactions: The Impact of Order and Time of Infection on Population Patterns. American Journal of Epidemiology, 2012, 175, 363-367.	1.6	22
38	Predicting the effect of climate change on African trypanosomiasis: integrating epidemiology with parasite and vector biology. Journal of the Royal Society Interface, 2012, 9, 817-830.	1.5	89
39	Statistical Inference for Multi-Pathogen Systems. PLoS Computational Biology, 2011, 7, e1002135.	1.5	59
40	Evolution of Acute Infections and the Invasionâ€Persistence Tradeâ€Off. American Naturalist, 2009, 173, 446-455.	1.0	58