Hui-ping Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5318288/publications.pdf

Version: 2024-02-01

759190 677123 40 517 12 22 h-index citations g-index papers 41 41 41 735 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Surface hydroxyl groups functionalized graphite carbon nitride for high efficient removal of diquat dibromide from water. Journal of Colloid and Interface Science, 2021, 582, 70-80.	9.4	32
2	Selective removal of copper from the artificial nickel electrolysis anolyte by a novel chelating resin: batch, column and mechanisms. Journal of Dispersion Science and Technology, 2020, 41, 137-147.	2.4	4
3	Fixed-bed column study for deep removal of copper (II) from simulated cobalt electrolyte using polystyrene-supported 2-aminomethylpyridine chelating resin. Journal of Central South University, 2019, 26, 1374-1384.	3.0	2
4	Phase separation in solvent extraction of copper or nickel from acidic solution using a sulfonic acid (HDNNS) and a carboxylate ester (4PC). Journal of Dispersion Science and Technology, 2019, 40, 819-827.	2.4	3
5	Investigation on enthalpies of combustion and heat capacities for 2-aminomethylpyridine derivatives. Journal of Thermal Analysis and Calorimetry, 2018, 133, 1627-1633.	3.6	O
6	Selective removal of copper from simulated nickel electrolyte by polystyrene-supported 2-aminomethylpyridine chelating resin. Chemical Papers, 2018, 72, 2071-2085.	2.2	11
7	Structural insights into the extraction mechanism of cobalt(II) with dinonylnaphthalene sulfonic acid and 2-ethylhexyl 4-pyridinecarboxylate ester. Journal of Coordination Chemistry, 2018, 71, 2441-2456.	2.2	6
8	The Coordination Structure of the Extracted Cobalt(<scp>II</scp>) Complex with a Synergistic Mixture Containing Lix63 and Versatic10. Journal of the Chinese Chemical Society, 2017, 64, 833-842.	1.4	4
9	The coordination structure of the extracted nickel(<scp>ii</scp>) complex with a synergistic mixture containing dinonylnaphthalene sulfonic acid and 2-ethylhexyl 4-pyridinecarboxylate ester. Dalton Transactions, 2017, 46, 1075-1082.	3.3	24
10	Structural Insights into the Coordination and Extraction Mechanism of Nickel(II) with Dinonylnaphthalene Sulfonic Acid and ⟨i⟩n⟨ i⟩â€Hexyl 3â€Pyridinecarboxylate Ester as Extractants. Journal of the Chinese Chemical Society, 2017, 64, 1294-1302.	1.4	4
11	The Influence of Residual Acidic and Sulfate Impurities of Electrolytic Manganese Dioxide on the Electrochemistry of LiMn2 O4 Cathode. ChemistrySelect, 2017, 2, 9402-9406.	1.5	0
12	Insights into the extraction mechanism from the coordination chemistry of copper(II) with a synergistic mixture which mimics Versatic10 and 2-ethylhexyl 4-pyridinecarboxylate ester. Journal of Coordination Chemistry, 2017, 70, 3325-3337.	2.2	1
13	FT-IR, XPS, and DFT Study of Adsorption Mechanism of Sodium Acetohydroxamate onto Goethite or Hematite. Chinese Journal of Chemical Physics, 2016, 29, 308-318.	1.3	18
14	Adsorption mechanism of the simulated red mud from diaspore with high levels of silicon and iron. Canadian Journal of Chemical Engineering, 2016, 94, 1700-1709.	1.7	3
15	Negative effect of dissolved organic compounds on settling behavior of synthetic monominerals in red mud. Journal of Central South University, 2016, 23, 1591-1602.	3.0	5
16	Thermodynamic Properties of the β-Diketone–ZnSO4–(NH4)2SO4–NH3(aq)–H2O System. Journal of Chemical & Engineering Data, 2016, 61, 1585-1591.	1.9	0
17	Flocculation performance and mechanism of hydroxamate flocculants on synthetic hematite or goethite suspension. Journal of Central South University, 2015, 22, 1626-1634.	3.0	3
18	Synthesis of modified polyacrylamide with high content of hydroxamate groups and settling performance of red mud. Journal of Central South University, 2015, 22, 2073-2080.	3.0	7

#	Article	IF	Citations
19	The recovery of Zn and Pb and the manufacture of lightweight bricks from zinc smelting slag and clay. Journal of Hazardous Materials, 2014, 271, 220-227.	12.4	48
20	Dissolution mechanism and solubility of hemimorphite in NH3-(NH4)2SO4-H2O system at 298.15 K. Journal of Central South University, 2014, 21, 884-890.	3.0	8
21	Extraction of zinc(II) from ammoniacal solution into hydrophobic ionic liquids. Journal of Chemical Technology and Biotechnology, 2013, 88, 644-650.	3.2	9
22	Amine/acid catalyzed synthesis of a new silica-aminomethyl pyridine material as a selective adsorbent of copper. Journal of Materials Chemistry, 2012, 22, 17293.	6.7	35
23	Dissolution kinetics of malachite in ammonia/ammonium sulphate solution. Journal of Central South University, 2012, 19, 903-910.	3.0	17
24	Leaching kinetics of low-grade copper ore with high-alkality gangues in ammonia-ammonium sulphate solution. Journal of Central South University, 2012, 19, 77-84.	3.0	26
25	Porous TiO2with a controllable bimodal pore size distribution from natural ilmenite. CrystEngComm, 2011, 13, 1322-1327.	2.6	23
26	MoO3 nanoparticles dispersed uniformly in carbon matrix: a high capacity composite anode for Li-ion batteries. Journal of Materials Chemistry, 2011, 21, 9350.	6.7	127
27	Leaching Kinetics of Willemite in Ammonia-Ammonium Chloride Solution. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2011, 42, 633-641.	2.1	10
28	Real-solution stability diagrams for copper-ammonia-chloride-water system. Central South University, 2011, 18, 48-55.	0.5	6
29	Light energy conversion device for photocatalyst 2.0%WO3-TiO2 with oxygen vacancies for water splitting. Central South University, 2010, 17, 943-946.	0.5	1
30	Effects of Mechanical Activation on the HCl Leaching Behavior of Titanaugite, Ilmenite, and Their Mixtures. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2010, 41, 1158-1165.	2.1	13
31	Preparation of TiO2 photocatalyst loaded with V2O5 for O2 evolution. Central South University, 2009, 16, 919-925.	0.5	14
32	Thermal decomposition behaviour of polyacrylamidomethyltrimethyl ammonium chloride in red mud separation process. Central South University, 2008, 15, 808-813.	0.5	0
33	Preparation, characterization and photocatalytic behavior of WO3-TiO2/Nb2O5 catalysts. Central South University, 2007, 14, 788-792.	0.5	6
34	Structural change of mechanically activated molybdenite and the effect of mechanical activation on molybdenite. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2004, 35, 1203-1207.	2.1	11
35	The thermal behavior of mechanically activated galena by thermogravimetry analysis. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34, 793-797.	2.2	5
36	The thermal behavior of mechanically activated galena by thermogravimetry analysis. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34, 793-797.	2.2	8

#	Article	IF	CITATION
37	Effect of aging conditions on the leaching of mechanically activated pyrite and sphalerite. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2003, 34, 639-645.	2.1	7
38	The oxidation behavior of unactivated and mechanically activated sphalerite. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2002, 33, 897-900.	2.1	16
39	Effects of inâ€situ grown SiC on the microstructure and antiâ€ablation performance of C/C–SiC composites fabricated by sol–gel and precursor impregnation and pyrolysis. Advanced Engineering Materials, 0, , .	3.5	0
40	The application of structural analysis in the investigation of solvent extraction mechanism. Journal of Coordination Chemistry, 0, , 1-24.	2.2	0