Gerd B MÃ¹/₄ller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5318/publications.pdf

Version: 2024-02-01

48 papers

4,188 citations

218592 26 h-index 233338 45 g-index

51 all docs

51 docs citations

51 times ranked

3145 citing authors

#	Article	IF	CITATIONS
1	Evo-Devo's Contributions to the Extended Evolutionary Synthesis. , 2021, , 1127-1138.		4
2	Evo-Devo's Contributions to the Extended Evolutionary Synthesis. , 2020, , 1-12.		1
3	A threshold model for polydactyly. Progress in Biophysics and Molecular Biology, 2018, 137, 1-11.	1.4	13
4	Developmental finite element analysis of cichlid pharyngeal jaws: Quantifying the generation of a key innovation. PLoS ONE, 2018, 13, e0189985.	1.1	10
5	Polydactyly in Development, Inheritance, and Evolution. Quarterly Review of Biology, 2017, 92, 1-38.	0.0	29
6	Why an extended evolutionary synthesis is necessary. Interface Focus, 2017, 7, 20170015.	1.5	102
7	Phenotypic Novelty in EvoDevo: The Distinction Between Continuous and Discontinuous Variation and Its Importance in Evolutionary Theory. Evolutionary Biology, 2016, 43, 314-335.	0.5	31
8	The cephalopod arm crown: appendage formation and differentiation in the Hawaiian bobtail squid Euprymna scolopes. Frontiers in Zoology, 2016, 13, 44.	0.9	14
9	Past climate change on Sky Islands drives novelty in a core developmental gene network and its phenotype. BMC Evolutionary Biology, 2015, 15, 183.	3.2	36
10	The Morphometrics of "Masculinity―in Human Faces. PLoS ONE, 2015, 10, e0118374.	1.1	55
11	The extended evolutionary synthesis: its structure, assumptions and predictions. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151019.	1.2	755
12	Heterochrony and Early Left-Right Asymmetry in the Development of the Cardiorespiratory System of Snakes. PLoS ONE, 2015, 10, e116416.	1.1	14
13	The lateral mesodermal divide: an epigenetic model of the origin of paired fins. Evolution & Development, 2014, 16, 38-48.	1.1	10
14	Biased Polyphenism in Polydactylous Cats Carrying a Single Point Mutation: The Hemingway Model for Digit Novelty. Evolutionary Biology, 2014, 41, 262-275.	0.5	21
15	Evolution evolves: physiology returns to centre stage. Journal of Physiology, 2014, 592, 2237-2244.	1.3	102
16	EvoDevo Shapes the Extended Synthesis. Biological Theory, 2014, 9, 119-121.	0.8	5
17	Does evolutionary theory need a rethink?. Nature, 2014, 514, 161-164.	13.7	727
18	Studying Developmental Variation with Geometric Morphometric Image Analysis (GMIA). PLoS ONE, 2014, 9, e115076.	1.1	19

#	Article	IF	Citations
19	Is Non-genetic Inheritance Just a Proximate Mechanism? A Corroboration of the Extended Evolutionary Synthesis. Biological Theory, 2013, 7, 189-195.	0.8	63
20	Beyond Spandrels: Stephen J. Gould, EvoDevo, and the Extended Synthesis., 2013,, 85-99.		5
21	BIO. Evolution & Development, 2011, 13, 243-246.	1.1	2
22	MicroCT for molecular imaging: Quantitative visualization of complete threeâ€dimensional distributions of gene products in embryonic limbs. Developmental Dynamics, 2011, 240, 2301-2308.	0.8	59
23	Lindsay Craigâ€"The So-Called Extended Synthesis and Population Genetics (Biological Theory 5: 117–123,) Tj	ETOg1 1	0.784314 rg
24	Threeâ€dimensional description and mathematical characterization of the parasellar internal carotid artery in human infants. Journal of Anatomy, 2008, 212, 636-644.	0.9	13
25	Pere Alberch: Originator of EvoDevo. Biological Theory, 2008, 3, 351-356.	0.8	6
26	Evo–devo: extending the evolutionary synthesis. Nature Reviews Genetics, 2007, 8, 943-949.	7.7	481
27	Before programs: The physical origination of multicellular forms. International Journal of Developmental Biology, 2006, 50, 289-299.	0.3	149
28	High-resolution episcopic microscopy: a rapid technique for high detailed 3D analysis of gene activity in the context of tissue architecture and morphology. Anatomy and Embryology, 2006, 211, 213-221.	1.5	147
29	Rupert Riedl's Path of Cognition. Biological Theory, 2006, 1, 188-190.	0.8	1
30	The innovation triad: an EvoDevo agenda. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2005, 304B, 487-503.	0.6	151
31	Embryonic motility: environmental influences and evolutionary innovation. Evolution & Development, 2003, 5, 56-60.	1.1	83
32	Evolutionary innovations overcome ancestral constraints: a re-examination of character evolution in male sepsid flies (Diptera: Sepsidae). Evolution & Development, 2002, 4, 1-6.	1.1	55
33	3D modelling of gene expression patterns. Trends in Biotechnology, 2001, 19, 145-148.	4.9	21
34	Epigenetic mechanisms of character origination. The Journal of Experimental Zoology, 2000, 288, 304-317.	1.4	241
35	Computer-based three-dimensional visualization of developmental gene expression. Nature Genetics, 2000, 25, 147-152.	9.4	81
36	The parasellar region of human infants: cavernous sinus topography and surgical approaches. Journal of Neurosurgery, 1999, 90, 484-490.	0.9	33

#	Article	IF	CITATIONS
37	Generation, Integration, Autonomy: Three Steps in the Evolution of Homology. Novartis Foundation Symposium, 1999, 222, 65-79.	1.2	26
38	A new episcopic method for rapid 3-D reconstruction: applications in anatomy and embryology. Anatomy and Embryology, 1998, 197, 341-348.	1.5	69
39	A comparative study of stereolithographically modelled skulls of Petralona and Broken Hill: implications for future studies of middle Pleistocene hominid evolution. Journal of Human Evolution, 1997, 33, 691-703.	1.3	96
40	Anatomical compartments of the parasellar region: adipose tissue bodies represent intracranial continuations of extracranial spaces. Journal of Anatomy, 1997, 191, 269-275.	0.9	25
41	External marker-based automatic congruencing: A new method of 3D reconstruction from serial sections. The Anatomical Record, 1997, 248, 583-602.	2.3	89
42	External markerâ€based automatic congruencing: A new method of 3D reconstruction from serial sections. The Anatomical Record, 1997, 248, 583-602.	2.3	5
43	Limb development in a primitive crustacean, Triops longicaudatus: subdivision of the early limb bud gives rise to multibranched limbs. Development Genes and Evolution, 1996, 206, 161-168.	0.4	24
44	Homology, HoxGenes, and Developmental Integration. American Zoologist, 1996, 36, 4-13.	0.7	79
45	Natural and experimental reduction of the avian fibula: Developmental thresholds and evolutionary constraint. Journal of Morphology, 1992, 214, 269-285.	0.6	30
46	Experimental Strategies in Evolutionary Embryology. American Zoologist, 1991, 31, 605-615.	0.7	29
47	Ontogeny of the limb skeleton inAlligator mississippiensis: Developmental invariance and change in the evolution of archosaur limbs. Journal of Morphology, 1990, 203, 151-164.	0.6	116
48	Ancestral patterns in bird limb development: A new look at Hampe's experiment. Journal of Evolutionary Biology, 1989, 2, 31-47.	0.8	46