
Maoru Chi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/531778/publications.pdf Version: 2024-02-01

Млори Сні

#	Article	IF	CITATIONS
1	A study of formation of high order wheel polygonalization. Wear, 2019, 424-425, 1-14.	3.1	63
2	Influence of polygonal wear of railway wheels on the wheel set axle stress. Vehicle System Dynamics, 2015, 53, 1535-1554.	3.7	60
3	Carbody elastic vibrations of high-speed vehicles caused by bogie hunting instability. Vehicle System Dynamics, 2017, 55, 1321-1342.	3.7	49
4	Experimental and numerical study on carbody hunting of electric locomotive induced by low wheel–rail contact conicity. Vehicle System Dynamics, 2021, 59, 203-223.	3.7	44
5	Damage tolerances of a railway axle in the presence of wheel polygonalizations. Engineering Failure Analysis, 2016, 66, 44-59.	4.0	43
6	An investigation of abnormal vibration – induced coil spring failure in metro vehicles. Engineering Failure Analysis, 2020, 108, 104238.	4.0	33
7	A long-term tracking test of high-speed train with wheel polygonal wear. Vehicle System Dynamics, 2021, 59, 1735-1758.	3.7	32
8	Experimental and numerical analysis of the polygonal wear of high-speed trains. Wear, 2019, 440-441, 203079.	3.1	29
9	Parameters Study of Hopf Bifurcation in Railway Vehicle System. Journal of Computational and Nonlinear Dynamics, 2015, 10, .	1.2	20
10	A signal analysis based hunting instability detection methodology for high-speed railway vehicles. Vehicle System Dynamics, 2021, 59, 1461-1483.	3.7	20
11	Investigation of the effects of sleeper-passing impacts on the high-speed train. Vehicle System Dynamics, 2015, 53, 1902-1917.	3.7	19
12	Numerical Investigation into the Critical Speed and Frequency of the Hunting Motion in Railway Vehicle System. Mathematical Problems in Engineering, 2019, 2019, 1-15.	1.1	15
13	An investigation of rocking derailment of railway vehicles under the earthquake excitation. Engineering Failure Analysis, 2020, 117, 104913.	4.0	14
14	Experimental and Numerical Investigation into Formation of Metro Wheel Polygonalization. Shock and Vibration, 2019, 2019, 1-18.	0.6	13
15	An investigation into the influence of wheel–rail contact relationships on the carbody hunting stability of an electric locomotive. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2022, 236, 1198-1209.	2.0	11
16	Mathematical Modelling and Computational Simulation of the Hydraulic Damper during the Orifice-Working Stage for Railway Vehicles. Mathematical Problems in Engineering, 2020, 2020, 1-23.	1.1	7
17	Wheel polygonisation growth due to multiple wheelsets/track coupling vibration. Vehicle System Dynamics, 2023, 61, 177-199.	3.7	7
18	A novel measuring system for high-speed railway vehicles hunting monitoring able to predict wheelset motion and wheel/rail contact characteristics. Vehicle System Dynamics, 2023, 61, 1621-1643.	3.7	7

Maoru Chi

#	Article	IF	CITATIONS
19	An Investigation into the Modeling Methodology of the Coil Spring. Shock and Vibration, 2020, 2020, 1-13.	0.6	6
20	A hybrid neural network model based modelling methodology for the rubber bushing. Vehicle System Dynamics, 2022, 60, 2941-2962.	3.7	4
21	Online estimation of fatigue damage of railway bogie frame based on axle box accelerations. Vehicle System Dynamics, 2023, 61, 286-308.	3.7	4
22	A physical model-neural network coupled modelling methodology of the hydraulic damper for railway vehicles. Vehicle System Dynamics, 2023, 61, 616-637.	3.7	4
23	Modal parameters-based hunting stability analysis of high-speed railway vehicles considering full range of equivalent conicity. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 0, , 146441932211032.	0.8	4
24	Vibration characteristics of bogie hunting motion based on root loci curves. Acta Mechanica Sinica/Lixue Xuebao, 2022, 38, .	3.4	3
25	Study of Vertical Characteristics with Changes in Prepressure of Rubber Pad Used by High-Speed EMU. Advances in Materials Science and Engineering, 2020, 2020, 1-13.	1.8	2
26	Motion Control of a 4WS4WD Path-Following Vehicle: Further Studies on Steering and Driving Models. Shock and Vibration, 2021, 2021, 1-25.	0.6	2
27	Numerical Analysis of the Effect of Temperature and External Stochastic Excitations on HTS Bulk's Levitodynamics. Journal of Superconductivity and Novel Magnetism, 0, , .	1.8	2
28	Calculation of Nonlinear Stiffness of Rubber Pad under Different Temperatures and Prepressures. Shock and Vibration, 2020, 2020, 1-10.	0.6	1
29	Study on Steady-State Responses of High-Speed Vehicle Using Infinite Long Track Model. Shock and Vibration, 2020, 2020, 1-17.	0.6	1
30	Motion Control of a 4WS4WD Path-Following Vehicle: Dynamics-Based Steering and Driving Models. Shock and Vibration, 2021, 2021, 1-13.	0.6	1
31	The Simulation on Thermal-Electromagnetism of High- <i>T_c </i> Superconducting Bulks Under Stochastic Excitations. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-24.	1.7	1
32	Comparative Analysis of the HTS Bulks' Levitation Characteristics Calculated by the Indirect Coupling Method. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-10.	1.7	1