Haiyang Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5317767/publications.pdf Version: 2024-02-01

HAIVANC SHI

#	Article	IF	CITATIONS
1	A Global Meta-Analysis of Soil Salinity Prediction Integrating Satellite Remote Sensing, Soil Sampling, and Machine Learning. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-15.	2.7	8
2	Spatiotemporal variations in aerosol optical depth and associated risks for populations in the arid region of Central Asia. Science of the Total Environment, 2022, 816, 151558.	3.9	8
3	Numerical study on the climatic effect of the Aral Sea. Atmospheric Research, 2022, 268, 105977.	1.8	9
4	Adaptive estimation of multi-regional soil salinization using extreme gradient boosting with Bayesian TPE optimization. International Journal of Remote Sensing, 2022, 43, 778-811.	1.3	7
5	Contribution of cropland expansion to regional carbon stocks in an arid area of China: a case study in Xinjiang. Carbon Management, 2022, 13, 42-54.	1.2	2
6	Where Anthropogenic Activity Occurs, Anthropogenic Activity Dominates Vegetation Net Primary Productivity Change. Remote Sensing, 2022, 14, 1092.	1.8	12
7	Net carbon flux from cropland changes in the Central Asian Aral Sea Basin. Journal of Environmental Management, 2022, 314, 115078.	3.8	2
8	LSTM-Based Model for Predicting Inland River Runoff in Arid Region: A Case Study on Yarkant River, Northwest China. Water (Switzerland), 2022, 14, 1745.	1.2	7
9	How precipitation and grazing influence the ecological functions of drought-prone grasslands on the northern slopes of the Tianshan Mountains, China?. Journal of Arid Land, 2021, 13, 88-97.	0.9	6
10	A novel causal structure-based framework for comparing a basin-wide water–energy–food–ecology nexus applied to the data-limited Amu Darya and Syr Darya river basins. Hydrology and Earth System Sciences, 2021, 25, 901-925.	1.9	26
11	Impacts of Historical Land Use/Cover Change (1980–2015) on Summer Climate in the Aral Sea Region. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD032638.	1.2	17
12	Quantifying the contribution of climate change and human activities to biophysical parameters in an arid region. Ecological Indicators, 2021, 129, 107996.	2.6	15
13	Assessment of Climate Change in Central Asia from 1980 to 2100 Using the Köppen-Geiger Climate Classification. Atmosphere, 2021, 12, 123.	1.0	12
14	A framework for estimating actual evapotranspiration at weather stations without flux observations by combining data from MODIS and flux towers through a machine learning approach. Journal of Hydrology, 2021, 603, 127047.	2.3	13
15	Desertification Extraction Based on a Microwave Backscattering Contribution Decomposition Model at the Dry Bottom of the Aral Sea. Remote Sensing, 2021, 13, 4850.	1.8	1
16	Analysis of the Impacts of Environmental Factors on Rat Hole Density in the Northern Slope of the Tienshan Mountains with Satellite Remote Sensing Data. Remote Sensing, 2021, 13, 4709.	1.8	5
17	Simulation of siteâ€scale water fluxes in desert and natural oasis ecosystems of the arid region in Northwest China. Hydrological Processes, 2021, 35, e14444.	1.1	3
18	Assessing Satellite, Land Surface Model and Reanalysis Evapotranspiration Products in the Absence of In-Situ in Central Asia. Remote Sensing, 2021, 13, 5148.	1.8	10

HAIYANG SHI

#	Article	IF	CITATIONS
19	Coupling the water-energy-food-ecology nexus into a Bayesian network for water resources analysis and management in the Syr Darya River basin. Journal of Hydrology, 2020, 581, 124387.	2.3	76
20	Large-scale rain-fed to paddy farmland conversion modified land-surface thermal properties in Cold China. Science of the Total Environment, 2020, 722, 137917.	3.9	15
21	Numerical Study of the Interaction between Oasis and Urban Areas within an Arid Mountains-Desert System in Xinjiang, China. Atmosphere, 2020, 11, 85.	1.0	9
22	The Responses of the Ecosystems in the Tianshan North Slope under Multiple Representative Concentration Pathway Scenarios in the Middle of the 21st Century. Sustainability, 2020, 12, 427.	1.6	2
23	AGA-SVR-based selection of feature subsets and optimization of parameter in regional soil salinization monitoring. International Journal of Remote Sensing, 2020, 41, 4470-4495.	1.3	25
24	Temporal and Spatial Changes in Crop Water Use Efficiency in Central Asia from 1960 to 2016. Sustainability, 2020, 12, 572.	1.6	7
25	Human appropriation of net primary production estimates in the Xinjiang grasslands. PLoS ONE, 2020, 15, e0242478.	1.1	1
26	Mapping evapotranspiration variability over a complex oasis-desert ecosystem based on automated calibration of Landsat 7 ETM+ data in SEBAL. GIScience and Remote Sensing, 2019, 56, 1305-1332.	2.4	18
27	Comparative Analysis of Deterministic and Semiquantitative Approaches for Shallow Landslide Risk Modeling in Rwanda. Risk Analysis, 2019, 39, 2576-2595.	1.5	13
28	Agriculture intensification increases summer precipitation in Tianshan Mountains, China. Atmospheric Research, 2019, 227, 140-146.	1.8	30
29	Numerical Simulation of the Irrigation Effects on Surface Fluxes and Local Climate in Typical Mountainâ€Oasisâ€Desert Systems in the Central Asia Arid Area. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12485-12506.	1.2	28
30	Comparing probabilistic and statistical methods in landslide susceptibility modeling in Rwanda/Centre-Eastern Africa. Science of the Total Environment, 2019, 659, 1457-1472.	3.9	59
31	Satellite-observed vegetation stability in response to changes in climate and total water storage in Central Asia. Science of the Total Environment, 2019, 659, 862-871.	3.9	58
32	Temporospatial patterns of human appropriation of net primary production in Central Asia grasslands. Ecological Indicators, 2018, 91, 555-561.	2.6	20
33	Effects of Cropland Conversion and Climate Change on Agrosystem Carbon Balance of China's Dryland: A Typical Watershed Study. Sustainability, 2018, 10, 4508.	1.6	14
34	Response of Carbon Dynamics to Climate Change Varied among Different Vegetation Types in Central Asia. Sustainability, 2018, 10, 3288.	1.6	9
35	Effects of grazing on net primary productivity, evapotranspiration and water use efficiency in the grasslands of Xinjiang, China. Journal of Arid Land, 2018, 10, 588-600.	0.9	15
36	Landslide Susceptibility Assessment Using Spatial Multi-Criteria Evaluation Model in Rwanda. International Journal of Environmental Research and Public Health, 2018, 15, 243.	1.2	91

HAIYANG SHI

#	Article	IF	CITATIONS
37	Robustness and Uncertainties of the "Temperature and Greenness―Model for Estimating Terrestrial Gross Primary Production. Scientific Reports, 2017, 7, 44046.	1.6	10
38	Spatioâ€ŧemporal patterns of grassland evapotranspiration and water use efficiency in arid areas. Ecological Research, 2017, 32, 523-535.	0.7	19
39	Ecological Effects of Grazing in the Northern Tianshan Mountains. Water (Switzerland), 2017, 9, 932.	1.2	6
40	Improved Atmospheric Modelling of the Oasis-Desert System in Central Asia Using WRF with Actual Satellite Products. Remote Sensing, 2017, 9, 1273.	1.8	21
41	Land–Atmosphere Exchange of Water and Heat in the Arid Mountainous Grasslands of Central Asia during the Growing Season. Water (Switzerland), 2017, 9, 727.	1.2	4
42	Possible Causes for Spatial and Temporal Variation of Warm Season Precipitation in Xinjiang from 1960–2014. Atmosphere, 2017, 8, 20.	1.0	5
43	Numerical Simulations of the Impacts of Mountain on Oasis Effects in Arid Central Asia. Atmosphere, 2017, 8, 212.	1.0	10
44	Estimation of above-ground biomass using MODIS satellite imagery of multiple land-cover types in China. Remote Sensing Letters, 2016, 7, 1141-1149.	0.6	13
45	Simulated grazing effects on carbon emission in Central Asia. Agricultural and Forest Meteorology, 2016, 216, 203-214.	1.9	64
46	Dynamics of landscape patterns in an inland river delta of Central Asia based on a cellular automata-Markov model. Regional Environmental Change, 2015, 15, 277-289.	1.4	29
47	Carbon stock and its responses to climate change in <scp>C</scp> entral <scp>A</scp> sia. Global Change Biology, 2015, 21, 1951-1967.	4.2	150
48	Mapping of regional soil salinities in Xinjiang and strategies for amelioration and management. Chinese Geographical Science, 2015, 25, 321-336.	1.2	13
49	Seasonal and inter-annual variations in carbon fluxes and evapotranspiration over cotton field under drip irrigation with plastic mulch in an arid region of Northwest China. Journal of Arid Land, 2015, 7, 272-284.	0.9	42
50	Detection of vegetation abundance change in the alpine tree line using multitemporal Landsat Thematic Mapper imagery. International Journal of Remote Sensing, 2015, 36, 4683-4701.	1.3	22
51	The relationship between soil, climate and forest development in the mid-mountain zone of the Sangong River watershed in the northern Tianshan Mountains, China. Journal of Arid Land, 2015, 7, 63-72.	0.9	7
52	Growing season net ecosystem <scp>CO</scp> ₂ exchange of two desert ecosystems with alkaline soils in Kazakhstan. Ecology and Evolution, 2014, 4, 14-26.	0.8	21
53	Modeling the contribution of abiotic exchange to CO2 flux in alkaline soils of arid areas. Journal of Arid Land, 2014, 6, 27-36.	0.9	13
54	Can soil respiration estimate neglect the contribution of abiotic exchange?. Journal of Arid Land, 2014, 6, 129-135.	0.9	14

HAIYANG SHI

#	Article	IF	CITATIONS
55	Biomass Allocation Patterns across China's Terrestrial Biomes. PLoS ONE, 2014, 9, e93566.	1.1	26
56	Persistence of four dominant psammophyte species in central Inner Mongolia of China under continual drought. Journal of Arid Land, 2013, 5, 331-339.	0.9	4
57	Detecting soil salinity with arid fraction integrated index and salinity index in feature space using Landsat TM imagery. Journal of Arid Land, 2013, 5, 340-353.	0.9	29
58	Modeling grassland net primary productivity and water-use efficiency along an elevational gradient of the Northern Tianshan Mountains. Journal of Arid Land, 2013, 5, 354-365.	0.9	20
59	A spatial-explicit dynamic vegetation model that couples carbon, water, and nitrogen processes for arid and semiarid ecosystems. Journal of Arid Land, 2013, 5, 102-117.	0.9	21
60	The spatial variation of alpine timberlines and their biogeographical characteristics in the northern Tianshan Mountains of China. Environmental Earth Sciences, 2013, 68, 129-137.	1.3	10
61	Modeling plant structure and its impacts on carbon and water cycles of the Central Asian arid ecosystem in the context of climate change. Ecological Modelling, 2013, 267, 158-179.	1.2	30
62	Moderate grazing can promote aboveground primary production of grassland under water stress. Ecological Complexity, 2012, 11, 126-136.	1.4	72
63	Soil properties at the tree limits of the coniferous forest in response to varying environmental conditions in the Tianshan Mountains, Northwest China. Environmental Earth Sciences, 2011, 63, 741-750.	1.3	10
64	Effects of land use change on landscape pattern of the Manas River watershed in Xinjiang, China. Environmental Earth Sciences, 2011, 64, 2067-2077.	1.3	41
65	Sustainable land-use patterns for arid lands: A case study in the northern slope areas of the Tianshan Mountains. Journal of Chinese Geography, 2010, 20, 510-524.	1.5	36
66	The Correlation Analysis of Vegetation Variable Process and Climate Variables in Alpine-Cold Wetland in Arid Area. , 2008, , .		1
67	A contrast of two typical LUCC processes and their driving forces in oases of arid areas: A case study of Sangong River Watershed at the northern foot of Tianshan Mountains. Science in China Series D: Earth Sciences, 2007, 50, 65-75.	0.9	13
68	Temporal and spatial variability response of groundwater level to land use/land cover change in oases of arid areas. Science Bulletin, 2006, 51, 51-59.	1.7	16
69	Stability of patches of oasis landscape in arid areas: A case study of Sangong River Watershed, Xinjiang, China. Science Bulletin, 2006, 51, 92-100.	1.7	9
70	Response of soil nutrients to different cropping systems in the oasis of arid land. Science Bulletin, 2006, 51, 167-172.	1.7	3
71	Oasis system and its reasonable development in Sangong River watershed in north of the Tianshan Mountains, Xinjiang, China. Chinese Geographical Science, 2006, 16, 236-242.	1.2	6
72	Ecological response to the climate change on the northern slope of the Tianshan Mountains in Xinjiang. Science in China Series D: Earth Sciences, 2005, 48, 765-777.	0.9	36