Qingtao Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5317691/publications.pdf

Version: 2024-02-01

	840585		1199470	
13	1,732 citations	11	12	
papers	citations	h-index	g-index	
1.0			0070	
13	13	13	2252	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Singleâ€Atom to Singleâ€Atom Grafting of Pt ₁ onto FeN ₄ Center: Pt ₁ @FeNC Multifunctional Electrocatalyst with Significantly Enhanced Properties. Advanced Energy Materials, 2018, 8, 1701345.	10.2	371
2	The Solidâ€Phase Synthesis of an Feâ€Nâ€C Electrocatalyst for Highâ€Power Protonâ€Exchange Membrane Fuel Cells. Angewandte Chemie - International Edition, 2018, 57, 1204-1208.	7.2	293
3	Metal organic framework-derived Fe/carbon porous composite with low Fe content for lightweight and highly efficient electromagnetic wave absorber. Chemical Engineering Journal, 2017, 314, 320-327.	6.6	292
4	Zigzag carbon as efficient and stable oxygen reduction electrocatalyst for proton exchange membrane fuel cells. Nature Communications, 2018, 9, 3819.	5.8	202
5	Iron atom–cluster interactions increase activity and improve durability in Fe–N–C fuel cells. Nature Communications, 2022, 13, .	5.8	159
6	Insights into the role of active site density in the fuel cell performance of Co-N-C catalysts. Applied Catalysis B: Environmental, 2019, 256, 117849.	10.8	104
7	Sequential Synthesis and Activeâ€Site Coordination Principle of Precious Metal Singleâ€Atom Catalysts for Oxygen Reduction Reaction and PEM Fuel Cells. Advanced Energy Materials, 2020, 10, 2000689.	10.2	92
8	Highly Accessible Atomically Dispersed Feâ€N <i></i> _{<sites 2002249.<="" 2021,="" 8,="" advanced="" cell.="" electrocatalyst="" for="" fuel="" membrane="" protonâ€exchange="" science,="" td=""><td>5.6</td><td>67</td></sites>}	5.6	67
9	The Solidâ€Phase Synthesis of an Feâ€Nâ€C Electrocatalyst for Highâ€Power Protonâ€Exchange Membrane Fuel Cells. Angewandte Chemie, 2018, 130, 1218-1222.	1.6	57
10	MOF-Derived Carbon Networks with Atomically Dispersed Fe–N _{<i>x</i>} Sites for Oxygen Reduction Reaction Catalysis in Acidic Media. , 2019, 1, 37-43.		40
11	Temperature Impacts on Oxygen Reduction Reaction Measured by the Rotating Disk Electrode Technique. Journal of Physical Chemistry C, 2020, 124, 3069-3079.	1.5	32
12	Effect of Catalyst Layer Hydrophobicity on Feâ^'Nâ^'C Proton Exchange Membrane Fuel Cells. ChemElectroChem, 2020, 7, 1775-1780.	1.7	12
13	Spatial porosity design of Fe–N–C catalysts for high power density PEM fuel cells and detection of water saturation of the catalyst layer by a microwave method. Journal of Materials Chemistry A, 2022, 10, 7764-7772.	5.2	11