Silvia Wen-Yu Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/531742/publications.pdf

Version: 2024-02-01

759055 839398 2,248 19 12 18 citations h-index g-index papers 19 19 19 2040 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Current status, opportunities and challenges of augmented reality in education. Computers and Education, 2013, 62, 41-49.	5.1	1,478
2	A review of using eye-tracking technology in exploring learning from 2000 to 2012. Educational Research Review, 2013, 10, 90-115.	4.1	377
3	Students' perceptions of collaboration, self-regulated learning, and information seeking in the context of Internet-based learning and traditional learning. Computers in Human Behavior, 2011, 27, 905-914.	5.1	116
4	A systematic review of trends and findings in research employing drawing assessment in science education. Studies in Science Education, 2020, 56, 77-110.	3.4	42
5	Investigating students' learning approaches, perceptions of online discussions, and students' online and academic performance. Computers and Education, 2013, 68, 345-352.	5.1	32
6	Development and implications of technology in reform-based physics laboratories. Physical Review Physics Education Research, 2012, 8, .	1.7	31
7	Technology-supported Learning in Secondary and Undergraduate Biological Education: Observations from Literature Review. Journal of Science Education and Technology, 2013, 22, 226-233.	2.4	25
8	Do sophisticated epistemic beliefs predict meaningful learning? Findings from a structural equation model of undergraduate biology learning. International Journal of Science Education, 2016, 38, 2327-2345.	1.0	22
9	Students' Views of Scientific Models and Modeling: Do Representational Characteristics of Models and Students' Educational Levels Matter?. Research in Science Education, 2017, 47, 305-328.	1.4	20
10	Do curious students learn more science in an immersive virtual reality environment? Exploring the impact of advance organizers and epistemic curiosity. Computers and Education, 2022, 182, 104456.	5.1	19
11	Measuring epistemologies in science learning and teaching: A systematic review of the literature. Science Education, 2021, 105, 880-907.	1.8	18
12	Identifying patterns of collaborative knowledge exploration in online asynchronous discussions. Instructional Science, 2011, 39, 321-347.	1.1	15
13	Investigating learners' engagement and science learning outcomes in different designs of participatory simulated games. British Journal of Educational Technology, 2021, 52, 1197-1214.	3.9	15
14	Structural Validation for the Developmental Model of Computational Thinking. Journal of Educational Computing Research, 2022, 60, 56-73.	3.6	15
15	Impact of biology laboratory courses on students' science performance and views about laboratory courses in general: innovative measurements and analyses. Journal of Biological Education, 2012, 46, 173-179.	0.8	13
16	Identifying the Item Hierarchy and Charting the Progression across Grade Levels: Surveying Taiwanese Students' Understanding of Scientific Models and Modeling. International Journal of Science and Mathematics Education, 2018, 16, 1409-1430.	1.5	5
17	Investigating the Links Between Students' Learning Engagement and Modeling Competence in Computer-Supported Modeling-Based Activities. Journal of Science Education and Technology, 2021, 30, 751-765.	2.4	2
18	Development and Validation of the Computational Thinking Test for Elementary School Students (CTT-ES): Correlate CT Competency With CT Disposition. Journal of Educational Computing Research, 0, , 073563312110510.	3.6	2

#	ŧ	Article	lF	CITATIONS
1	.9	Examining secondary school students' views of model evaluation through an integrated framework of personal epistemology. Instructional Science, 2021, 49, 1-26.	1.1	1