
Patrick Chames

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5317367/publications.pdf Version: 2024-02-01

DATDICK CHAMES

#	Article	IF	CITATIONS
1	Trispecific T-cell engagers for dual tumor-targeting of colorectal cancer. Oncolmmunology, 2022, 11, 2034355.	4.6	21
2	Nanobody-based sensors reveal a high proportion of mGlu heterodimers in the brain. Nature Chemical Biology, 2022, 18, 894-903.	8.0	19
3	Combining Acoustic Force Spectroscopy and DNA Scaffold for High Throughput Measurement of Ligand-Receptor Kinetics at Single Molecule Resolution. Biophysical Journal, 2021, 120, 186a.	0.5	Ο
4	A nanobody activating metabotropic glutamate receptor 4 discriminates between homo- and heterodimers. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	11
5	Multiphoton Deep-Tissue Imaging of Micrometastases and Disseminated Cancer Cells Using Conjugates of Quantum Dots and Single-Domain Antibodies. Methods in Molecular Biology, 2021, 2350, 105-123.	0.9	4
6	Anti-NKG2D single domain-based antibodies for the modulation of anti-tumor immune response. Oncolmmunology, 2021, 10, 1854529.	4.6	19
7	A Novel Anti-Kv10.1 Nanobody Fused to Single-Chain TRAIL Enhances Apoptosis Induction in Cancer Cells. Frontiers in Pharmacology, 2020, 11, 686.	3.5	16
8	A Bispecific Antibody-Based Approach for Targeting Mesothelin in Triple Negative Breast Cancer. Frontiers in Immunology, 2019, 10, 1593.	4.8	44
9	Nanobody-CD16 Catch Bond Reveals NK Cell Mechanosensitivity. Biophysical Journal, 2019, 116, 1516-1526.	0.5	36
10	Nanobody Engineering: Toward Next Generation Immunotherapies and Immunoimaging of Cancer. Antibodies, 2019, 8, 13.	2.5	100
11	Nanophotonic tools based on the conjugates of nanoparticles with the single-domain antibodies for multi-photon micrometastases detection and ultrasensitive biochemical assays. , 2019, , .		0
12	Single- and two-photon imaging of human micrometastases and disseminated tumour cells with conjugates of nanobodies and quantum dots. Scientific Reports, 2018, 8, 4595.	3.3	34
13	Advanced Nanotools for Imaging of Solid Tumors and Circulating and Disseminated Cancer Cells. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2018, 125, 703-707.	0.6	1
14	Phage Display and Selections on Purified Antigens. Methods in Molecular Biology, 2018, 1827, 165-178.	0.9	2
15	Quantification and imaging of HER2 protein using nanocrystals conjugated with single-domain antibodies. Journal of Physics: Conference Series, 2017, 784, 012016.	0.4	1
16	Allosteric nanobodies uncover a role of hippocampal mGlu2 receptor homodimers in contextual fear consolidation. Nature Communications, 2017, 8, 1967.	12.8	66
17	Taking up Cancer Immunotherapy Challenges: Bispecific Antibodies, the Path Forward?. Antibodies, 2016, 5, 1.	2.5	34
18	In vivo detection of small tumour lesions by multi-pinhole SPECT applying a 99mTc-labelled nanobody targeting the Epidermal Growth Factor Receptor. Scientific Reports, 2016, 6, 21834.	3.3	47

#	Article	IF	CITATIONS
19	V1/V2 Neutralizing Epitope is Conserved in Divergent Non-M Groups of HIV-1. Journal of Acquired Immune Deficiency Syndromes (1999), 2016, 71, 237-245.	2.1	7
20	Nanosized Fluorescent Diagnostic Probes Consisting of Single-domain Antibodies Conjugated with Quantum Dots. Materials Today: Proceedings, 2016, 3, 518-522.	1.8	0
21	Multiphoton Imaging of Tumor Biomarkers in situ Using Single-domain Antibodies Conjugated with Quantum Dots in a Set Orientation. Materials Today: Proceedings, 2016, 3, 523-526.	1.8	6
22	Oriented Conjugates of Single-domain Antibodies and Fluorescent Quantum Dots for Highly Sensitive Detection of Tumor-associated Biomarkers in Cells and Tissues. Physics Procedia, 2015, 73, 228-234.	1.2	5
23	Anti-Mesothelin Nanobodies for Both Conventional and Nanoparticle-Based Biomedical Applications. Journal of Biomedical Nanotechnology, 2015, 11, 1201-1212.	1.1	17
24	Diagnostic nanoprobes based on the conjugates of quantum dots and single-domain antibodies for cancer biomarkers detection in immunohistochemistry and flow cytometry. , 2015, , .		0
25	Multiphoton imaging of tumor biomarkers in situ using highly oriented conjugates of single-domain antibodies and quantum dots. , 2015, , .		0
26	Conformational Nanobodies Reveal Tethered Epidermal Growth Factor Receptor Involved in EGFR/ErbB2 Predimers. ACS Nano, 2015, 9, 1388-1399.	14.6	38
27	Detection of carcinoembryonic antigen using single-domain or full-size antibodies stained with quantum dot conjugates. Analytical Biochemistry, 2015, 478, 26-32.	2.4	24
28	SINGLE-PHOTON AND TWO-PHOTON TUMOR IMAGING AND DIAGNOSIS USING ORIENTED CONJUGATES OF SINGLE-DOMAIN ANTIBODIES AND QUANTUM DOTS. , 2015, , 495-498.		1
29	Selection of Intracellular Single-Domain Antibodies Targeting the HIV-1 Vpr Protein by Cytoplasmic Yeast Two-Hybrid System. PLoS ONE, 2014, 9, e113729.	2.5	14
30	A FcÎ ³ RIII-engaging bispecific antibody expands the range of HER2-expressing breast tumors eligible to antibody therapy. Oncotarget, 2014, 5, 5304-5319.	1.8	42
31	Adaptation of HIV-1 Envelope Glycoprotein gp120 to Humoral Immunity over the Course of the Epidemic. AIDS Research and Human Retroviruses, 2014, 30, A224-A224.	1.1	1
32	Drift of the HIV-1 Envelope Glycoprotein gp120 toward Increased Neutralization Resistance over the Course of the Epidemic: a Comprehensive Study Using the Most Potent and Broadly Neutralizing Monoclonal Antibodies. Journal of Virology, 2014, 88, 13910-13917.	3.4	42
33	Masked Selection: A Straightforward and Flexible Approach for the Selection of Binders Against Specific Epitopes and Differentially Expressed Proteins by Phage Display. Molecular and Cellular Proteomics, 2014, 13, 653-665.	3.8	32
34	Highly Sensitive Single Domain Antibody–Quantum Dot Conjugates for Detection of HER2 Biomarker in Lung and Breast Cancer Cells. ACS Nano, 2014, 8, 5682-5695.	14.6	89
35	Multiphoton imaging of tumor biomarkers with conjugates of single-domain antibodies and quantum dots. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1701-1709.	3.3	59
36	Single-Domain Antibody–Based and Linker-Free Bispecific Antibodies Targeting FcγRIII Induce Potent Antitumor Activity without Recruiting Regulatory T Cells. Molecular Cancer Therapeutics, 2013, 12, 1481-1491.	4.1	63

#	Article	IF	CITATIONS
37	Straightforward Selection of Broadly Neutralizing Single-Domain Antibodies Targeting the Conserved CD4 and Coreceptor Binding Sites of HIV-1 gp120. Journal of Virology, 2013, 87, 1137-1149.	3.4	40
38	Heavy Chain-Only IgG2b Llama Antibody Effects Near-Pan HIV-1 Neutralization by Recognizing a CD4-Induced Epitope That Includes Elements of Coreceptor- and CD4-Binding Sites. Journal of Virology, 2013, 87, 10173-10181.	3.4	22
39	Single-Domain Antibody-SH3 Fusions for Efficient Neutralization of HIV-1 Nef Functions. Journal of Virology, 2012, 86, 4856-4867.	3.4	19
40	Affinity Determination of Biotinylated Antibodies by Flow Cytometry. Methods in Molecular Biology, 2012, 907, 443-449.	0.9	4
41	Bi-photon imaging and diagnostics using ultra-small diagnostic probes engineered from semiconductor nanocrystals and single-domain antibodies. , 2012, , .		2
42	Single-domain antibodies: a versatile and rich source of binders for breast cancer diagnostic approaches. Molecular BioSystems, 2012, 8, 2385.	2.9	30
43	Synthetic Customized scFv Libraries. Methods in Molecular Biology, 2012, 907, 109-122.	0.9	10
44	Phage Display and Selections on Purified Antigens. Methods in Molecular Biology, 2012, 907, 213-224.	0.9	9
45	Phage Display and Selections on Cells. Methods in Molecular Biology, 2012, 907, 225-235.	0.9	25
46	Oriented conjugates of monoclonal and single-domain antibodies with quantum dots for flow cytometry and immunohistochemistry diagnostic applications. , 2012, , .		3
47	Structural definition of a novel CD4-induced epitope that is targeted by a single-headed immunoglobulin to effect broad and potent HIV neutralization. Retrovirology, 2012, 9, .	2.0	1
48	Straightforward selection of broadly neutralizing single-domain antibodies targeting the conserved CD4 and co-receptor binding sites of HIV-1 gp120. Retrovirology, 2012, 9, .	2.0	0
49	Oriented conjugates of single-domain antibodies and quantum dots: toward a new generation of ultrasmall diagnostic nanoprobes. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 516-525.	3.3	140
50	Inhibition of the Nef regulatory protein of HIV-1 by a single-domain antibody. Blood, 2011, 117, 3559-3568.	1.4	57
51	Bispecific Single Domain Antibodies. , 2011, , 101-114.		1
52	State of the Art in Tumor Antigen and Biomarker Discovery. Cancers, 2011, 3, 2554-2596.	3.7	38
53	Semiconductor quantum dots for multiplexed bio-detection on solid-state microarrays. Critical Reviews in Oncology/Hematology, 2010, 74, 1-15.	4.4	53
54	Therapeutic Antibodies for the Treatment of Pancreatic Cancer. Scientific World Journal, The, 2010, 10, 1107-1120.	2.1	15

#	Article	IF	CITATIONS
55	Strong and oriented immobilization of single domain antibodies from crude bacterial lysates for high-throughput compatible cost-effective antibody array generation. Molecular BioSystems, 2010, 6, 2241.	2.9	35
56	Bispecific antibodies for cancer therapy. MAbs, 2009, 1, 539-547.	5.2	260
57	Llama singleâ€domain antibodies directed against nonconventional epitopes of tumorâ€associated carcinoembryonic antigen absent from nonspecific crossâ€reacting antigen. FEBS Journal, 2009, 276, 3881-3893.	4.7	58
58	Therapeutic antibodies: successes, limitations and hopes for the future. British Journal of Pharmacology, 2009, 157, 220-233.	5.4	1,123
59	Bispecific antibodies for cancer therapy. Current Opinion in Drug Discovery & Development, 2009, 12, 276-83.	1.9	25
60	Selection of human antibody fragments directed against tumor Tâ€cell epitopes for adoptive Tâ€cell therapy. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2008, 73A, 1093-1099.	1.5	10
61	Isolation and characterization of anti-FcÂRIII (CD16) llama single-domain antibodies that activate natural killer cells. Protein Engineering, Design and Selection, 2007, 21, 1-10.	2.1	75
62	Engineering of Large Numbers of Highly Specific Homing Endonucleases that Induce Recombination on Novel DNA Targets. Journal of Molecular Biology, 2006, 355, 443-458.	4.2	175
63	A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Research, 2006, 34, e149-e149.	14.5	271
64	948. Rapid Production of Specific Artificial Meganucleases for Gene Correction in Patients with Inherited Disease. Molecular Therapy, 2006, 13, S366.	8.2	0
65	Optimizing the exogenous antigen loading of monocyte-derived dendritic cells. International Immunology, 2005, 17, 621-635.	4.0	19
66	T Cell Retargeting with MHC Class I-Restricted Antibodies: The CD28 Costimulatory Domain Enhances Antigen-Specific Cytotoxicity and Cytokine Production. Journal of Immunology, 2005, 174, 7853-7858.	0.8	61
67	A Major Histocompatibility Complex·Peptide-restricted Antibody and T Cell Receptor Molecules Recognize Their Target by Distinct Binding Modes. Journal of Biological Chemistry, 2005, 280, 2972-2980.	3.4	69
68	In vivo selection of engineered homing endonucleases using double-strand break induced homologous recombination. Nucleic Acids Research, 2005, 33, e178-e178.	14.5	55
69	Isolation of human antibodies to tumor-associated endothelial cell markers by in vitro human endothelial cell selection with phage display libraries. Journal of Immunological Methods, 2004, 287, 31-47.	1.4	44
70	Genetic engineering of T cell specificity for immunotherapy of cancer. Human Immunology, 2003, 64, 56-68.	2.4	56
71	A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Research, 2003, 31, 2952-2962.	14.5	225

72 Selection of Antibodies Against Biotinylated Antigens. , 2002, 178, 147-157.

#	Article	IF	CITATIONS
73	TCR-Like Human Antibodies Expressed on Human CTLs Mediate Antibody Affinity-Dependent Cytolytic Activity. Journal of Immunology, 2002, 169, 1110-1118.	0.8	70
74	Direct visualization of distinct T cell epitopes derived from a melanoma tumor-associated antigen by using human recombinant antibodies with MHC- restricted T cell receptor-like specificity. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9421-9426.	7.1	90
75	Isolation and characterization of human recombinant antibodies endowed with the antigen-specific, major histocompatibility complex-restricted specificity of T cells directed toward the widely expressed tumor T-cell epitopes of the telomerase catalytic subunit. Cancer Research, 2002, 62, 3184-94.	0.9	85
76	A phage display selected Fab fragment with MHC class I-restricted specificity for MAGE-A1 allows for retargeting of primary human T lymphocytes. Gene Therapy, 2001, 8, 1601-1608.	4.5	72
77	Selections on Biotinylated Antigens. , 2001, , 149-166.		1
78	Natural and designer binding sites made by phage display technology. Trends in Immunology, 2000, 21, 371-378.	7.5	202
79	Grafting primary human T lymphocytes with cancer-specific chimeric single chain and two chain TCR. Gene Therapy, 2000, 7, 1369-1377.	4.5	150
80	Antibody engineering and its applications in tumor targeting and intracellular immunization. FEMS Microbiology Letters, 2000, 189, 1-8.	1.8	45
81	Direct selection of a human antibody fragment directed against the tumor T-cell epitope HLA-A1-MAGE-A1 from a nonimmunized phage-Fab library. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 7969-7974.	7.1	111
82	Antibody engineering and its applications in tumor targeting and intracellular immunization. FEMS Microbiology Letters, 2000, 189, 1-8.	1.8	1
83	Engineering of an Anti-Steroid Antibody: Amino Acid Substitutions Change Antibody Fine Specificity from Cortisol Estradiol. Clinical Chemistry and Laboratory Medicine, 1998, 36, 355-9.	2.3	8
84	Intracellular Immunization of Prokaryotic Cells against a Bacteriotoxin. Journal of Bacteriology, 1998, 180, 514-518.	2.2	7
85	Production of a soluble and active MBP-scFv fusion: favorable effect of the leaky tolR strain. FEBS Letters, 1997, 405, 224-228.	2.8	13
86	Polymerase Chain Reaction-Based Site-Directed Mutagenesis Using Magnetic Beads. Analytical Biochemistry, 1996, 234, 210-214.	2.4	9
87	Evaluation of half-life of immobilized enzyme during continuous reaction in bioreactors: A theoretical study. Biotechnology and Bioengineering, 1987, 30, 963-969.	3.3	8
88	Engineering of ultra-small diagnostic nanoprobes through oriented conjugation of single-domain antibodies and quantum dots. Protocol Exchange, 0, , .	0.3	23