
## Mariana B Oliveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5317356/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Molecular Interactions Driving the Layer-by-Layer Assembly of Multilayers. Chemical Reviews, 2014, 114, 8883-8942.                                                                                                                | 47.7 | 697       |
| 2  | Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomaterialia, 2011, 7, 1009-1018.                               | 8.3  | 487       |
| 3  | Natural polymers for the microencapsulation of cells. Journal of the Royal Society Interface, 2014, 11, 20140817.                                                                                                                 | 3.4  | 480       |
| 4  | Polymer/bioactive glass nanocomposites for biomedical applications: A review. Composites Science and Technology, 2010, 70, 1764-1776.                                                                                             | 7.8  | 451       |
| 5  | Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications:<br>Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials,<br>2006, 27, 6123-6137. | 11.4 | 411       |
| 6  | Genipinâ€crossâ€linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering<br>applications. Journal of Biomedical Materials Research - Part A, 2010, 95A, 465-475.                                  | 4.0  | 291       |
| 7  | Smart thermoresponsive coatings and surfaces for tissue engineering: switching cell-material boundaries. Trends in Biotechnology, 2007, 25, 577-583.                                                                              | 9.3  | 289       |
| 8  | Controlling Cell Behavior Through the Design of Polymer Surfaces. Small, 2010, 6, 2208-2220.                                                                                                                                      | 10.0 | 289       |
| 9  | Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomaterialia, 2012, 8, 289-301.                                                               | 8.3  | 276       |
| 10 | Polyelectrolyte multilayered assemblies in biomedical technologies. Chemical Society Reviews, 2014, 43, 3453.                                                                                                                     | 38.1 | 262       |
| 11 | Bone physiology as inspiration for tissue regenerative therapies. Biomaterials, 2018, 185, 240-275.                                                                                                                               | 11.4 | 259       |
| 12 | Novel Genipin-Cross-Linked Chitosan/Silk Fibroin Sponges for Cartilage Engineering Strategies.<br>Biomacromolecules, 2008, 9, 2764-2774.                                                                                          | 5.4  | 240       |
| 13 | Stimuliâ€Responsive Nanocomposite Hydrogels for Biomedical Applications. Advanced Functional<br>Materials, 2021, 31, 2005941.                                                                                                     | 14.9 | 234       |
| 14 | Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration. Acta<br>Biomaterialia, 2012, 8, 4173-4180.                                                                                                | 8.3  | 209       |
| 15 | Marine Origin Polysaccharides in Drug Delivery Systems. Marine Drugs, 2016, 14, 34.                                                                                                                                               | 4.6  | 205       |
| 16 | Chitosan/Poly(É›-caprolactone) blend scaffolds for cartilage repair. Biomaterials, 2011, 32, 1068-1079.                                                                                                                           | 11.4 | 204       |
| 17 | Biomimetic design of materials and biomaterials inspired by the structure of nacre. Philosophical<br>Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 1587-1605.                               | 3.4  | 193       |
| 18 | lonic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications. Green Chemistry, 2017, 19, 1208-1220.                                                                               | 9.0  | 190       |

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Bioinspired Degradable Substrates with Extreme Wettability Properties. Advanced Materials, 2009, 21, 1830-1834.                                                                                           | 21.0 | 174       |
| 20 | Carrageenan-Based Hydrogels for the Controlled Delivery of PDGF-BB in Bone Tissue Engineering Applications. Biomacromolecules, 2009, 10, 1392-1401.                                                       | 5.4  | 165       |
| 21 | Drug Release of pH/Temperature-Responsive Calcium Alginate/Poly(N-isopropylacrylamide) Semi-IPN<br>Beads. Macromolecular Bioscience, 2006, 6, 358-363.                                                    | 4.1  | 150       |
| 22 | Development of bioactive and biodegradable chitosan-based injectable systems containing bioactive glass nanoparticles. Acta Biomaterialia, 2009, 5, 115-123.                                              | 8.3  | 150       |
| 23 | Chitosan Scaffolds Containing Hyaluronic Acid for Cartilage Tissue Engineering. Tissue Engineering -<br>Part C: Methods, 2011, 17, 717-730.                                                               | 2.1  | 149       |
| 24 | Preparation and in vitro characterization of scaffolds of poly(l-lactic acid) containing bioactive glass ceramic nanoparticles. Acta Biomaterialia, 2008, 4, 1297-1306.                                   | 8.3  | 148       |
| 25 | Bioinspired Ultratough Hydrogel with Fast Recovery, Selfâ€Healing, Injectability and Cytocompatibility.<br>Advanced Materials, 2017, 29, 1700759.                                                         | 21.0 | 148       |
| 26 | Preparation and <i>in vitro</i> characterization of novel bioactive glass ceramic nanoparticles.<br>Journal of Biomedical Materials Research - Part A, 2009, 88A, 304-313.                                | 4.0  | 144       |
| 27 | Interactions between cells or proteins and surfaces exhibiting extreme wettabilities. Soft Matter, 2013, 9, 2985.                                                                                         | 2.7  | 143       |
| 28 | Gellan Gum Injectable Hydrogels for Cartilage Tissue Engineering Applications: <i>In Vitro</i> Studies and Preliminary <i>In Vivo</i> Evaluation. Tissue Engineering - Part A, 2010, 16, 343-353.         | 3.1  | 142       |
| 29 | Polymerâ€based microparticles in tissue engineering and regenerative medicine. Biotechnology<br>Progress, 2011, 27, 897-912.                                                                              | 2.6  | 140       |
| 30 | Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: In vitro and in vivo assessment of biological performance. Acta Biomaterialia, 2015, 12, 227-241.                             | 8.3  | 140       |
| 31 | The osteogenic differentiation of rat bone marrow stromal cells cultured with<br>dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles.<br>Biomaterials, 2009, 30, 804-813. | 11.4 | 131       |
| 32 | Free-Standing Polyelectrolyte Membranes Made of Chitosan and Alginate. Biomacromolecules, 2013, 14,<br>1653-1660.                                                                                         | 5.4  | 131       |
| 33 | Extremely strong and tough hydrogels as prospective candidates for tissue repair – A review.<br>European Polymer Journal, 2015, 72, 344-364.                                                              | 5.4  | 129       |
| 34 | Advanced Bottomâ€Up Engineering of Living Architectures. Advanced Materials, 2020, 32, e1903975.                                                                                                          | 21.0 | 127       |
| 35 | Preparation and characterization of bioactive glass nanoparticles prepared by sol–gel for biomedical applications. Nanotechnology, 2011, 22, 494014.                                                      | 2.6  | 124       |
| 36 | Mineralized structures in nature: Examples and inspirations for the design of new composite materials and biomaterials. Composites Science and Technology, 2010, 70, 1777-1788.                           | 7.8  | 123       |

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Cell interactions with superhydrophilic and superhydrophobic surfaces. Journal of Adhesion Science and Technology, 2014, 28, 843-863.                                                                                                   | 2.6  | 123       |
| 38 | Chitosan coated alginate beads containing poly( <i>N</i> â€isopropylacrylamide) for<br>dualâ€stimuliâ€responsive drug release. Journal of Biomedical Materials Research - Part B Applied<br>Biomaterials, 2008, 84B, 595-603.           | 3.4  | 118       |
| 39 | Green processing of porous chitin structures for biomedical applications combining ionic liquids and supercritical fluid technology. Acta Biomaterialia, 2011, 7, 1166-1172.                                                            | 8.3  | 114       |
| 40 | Preparation of chitosan scaffolds loaded with dexamethasone for tissue engineering applications using supercritical fluid technology. European Polymer Journal, 2009, 45, 141-148.                                                      | 5.4  | 111       |
| 41 | Controlled Release Strategies for Bone, Cartilage, and Osteochondral Engineering—Part II:<br>Challenges on the Evolution from Single to Multiple Bioactive Factor Delivery. Tissue Engineering -<br>Part B: Reviews, 2013, 19, 327-352. | 4.8  | 108       |
| 42 | Extraction and physico-chemical characterization of a versatile biodegradable polysaccharide obtained from green algae. Carbohydrate Research, 2010, 345, 2194-2200.                                                                    | 2.3  | 106       |
| 43 | Layerâ€byâ€Layer Assembly of Lightâ€Responsive Polymeric Multilayer Systems. Advanced Functional<br>Materials, 2014, 24, 5624-5648.                                                                                                     | 14.9 | 106       |
| 44 | Nanostructured 3D Constructs Based on Chitosan and Chondroitin Sulphate Multilayers for Cartilage Tissue Engineering. PLoS ONE, 2013, 8, e55451.                                                                                        | 2.5  | 105       |
| 45 | Two-Dimensional Open Microfluidic Devices by Tuning the Wettability on Patterned Superhydrophobic<br>Polymeric Surface. Applied Physics Express, 2010, 3, 085205.                                                                       | 2.4  | 103       |
| 46 | Development and Characterization of a Novel Hybrid Tissue Engineering–Based Scaffold for Spinal<br>Cord Injury Repair. Tissue Engineering - Part A, 2010, 16, 45-54.                                                                    | 3.1  | 103       |
| 47 | Wettability Influences Cell Behavior on Superhydrophobic Surfaces with Different Topographies.<br>Biointerphases, 2012, 7, 46.                                                                                                          | 1.6  | 103       |
| 48 | Potential applications of natural origin polymer-based systems in soft tissue regeneration. Critical Reviews in Biotechnology, 2010, 30, 200-221.                                                                                       | 9.0  | 102       |
| 49 | Strategic Advances in Formation of Cellâ€inâ€Shell Structures: From Syntheses to Applications. Advanced<br>Materials, 2018, 30, e1706063.                                                                                               | 21.0 | 102       |
| 50 | Stimuli-responsive chitosan-starch injectable hydrogels combined with encapsulated adipose-derived stromal cells for articular cartilage regeneration. Soft Matter, 2010, 6, 5184.                                                      | 2.7  | 100       |
| 51 | Chemical modification of bioinspired superhydrophobic polystyrene surfaces to control cell attachment/proliferation. Soft Matter, 2011, 7, 8932.                                                                                        | 2.7  | 100       |
| 52 | Biomimetic Extracellular Environment Based on Natural Origin Polyelectrolyte Multilayers. Small, 2016, 12, 4308-4342.                                                                                                                   | 10.0 | 100       |
| 53 | High-throughput evaluation of interactions between biomaterials, proteins and cells using patterned superhydrophobic substrates. Soft Matter, 2011, 7, 4147.                                                                            | 2.7  | 99        |
| 54 | Production methodologies of polymeric and hydrogel particles for drug delivery applications. Expert<br>Opinion on Drug Delivery, 2012, 9, 231-248.                                                                                      | 5.0  | 98        |

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Chitosan membranes containing micro or nano-size bioactive glass particles: evolution of<br>biomineralization followed by in situ dynamic mechanical analysis. Journal of the Mechanical<br>Behavior of Biomedical Materials, 2013, 20, 173-183. | 3.1  | 98        |
| 56 | Layerâ€byâ€Layer Assembly of Chitosan and Recombinant Biopolymers into Biomimetic Coatings with<br>Multiple Stimuliâ€Responsive Properties. Small, 2011, 7, 2640-2649.                                                                           | 10.0 | 97        |
| 57 | Chondrogenic potential of injectable <i>κ</i> -carrageenan hydrogel with encapsulated adipose stem<br>cells for cartilage tissue-engineering applications. Journal of Tissue Engineering and Regenerative<br>Medicine, 2015, 9, 550-563.         | 2.7  | 97        |
| 58 | Viscoelastic Properties of Chitosan with Different Hydration Degrees as Studied by Dynamic<br>Mechanical Analysis. Macromolecular Bioscience, 2008, 8, 69-76.                                                                                    | 4.1  | 96        |
| 59 | Synthesis of Temperature-Responsive Dextran-MA/PNIPAAm Particles for Controlled Drug Delivery<br>Using Superhydrophobic Surfaces. Pharmaceutical Research, 2011, 28, 1294-1305.                                                                  | 3.5  | 96        |
| 60 | Bioinspired superhydrophobic poly( <scp>L</scp> â€lactic acid) surfaces control bone marrow derived cells adhesion and proliferation. Journal of Biomedical Materials Research - Part A, 2009, 91A, 480-488.                                     | 4.0  | 94        |
| 61 | The use of ionic liquids in the processing of chitosan/silk hydrogels for biomedical applications.<br>Green Chemistry, 2012, 14, 1463.                                                                                                           | 9.0  | 93        |
| 62 | Superhydrophobic Chips for Cell Spheroids High-Throughput Generation and Drug Screening. ACS Applied Materials & amp; Interfaces, 2014, 6, 9488-9495.                                                                                            | 8.0  | 91        |
| 63 | Coating Strategies Using Layerâ€byâ€layer Deposition for Cell Encapsulation. Chemistry - an Asian Journal,<br>2016, 11, 1753-1764.                                                                                                               | 3.3  | 90        |
| 64 | Bioinspired methodology to fabricate hydrogel spheres for multi-applications using superhydrophobic substrates. Soft Matter, 2010, 6, 5868.                                                                                                      | 2.7  | 88        |
| 65 | Chitosan-chondroitin sulphate nanoparticles for controlled delivery of platelet lysates in bone<br>regenerative medicine. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, s47-s59.                                             | 2.7  | 88        |
| 66 | Tailored Freestanding Multilayered Membranes Based on Chitosan and Alginate. Biomacromolecules, 2014, 15, 3817-3826.                                                                                                                             | 5.4  | 88        |
| 67 | Development of Gellan Gum-Based Microparticles/Hydrogel Matrices for Application in the<br>Intervertebral Disc Regeneration. Tissue Engineering - Part C: Methods, 2011, 17, 961-972.                                                            | 2.1  | 87        |
| 68 | Bioplotting of a bioactive alginate dialdehyde-gelatin composite hydrogel containing bioactive glass nanoparticles. Biofabrication, 2016, 8, 035005.                                                                                             | 7.1  | 86        |
| 69 | Rheological and mechanical properties of acellular and cellâ€laden methacrylated gellan gum<br>hydrogels. Journal of Biomedical Materials Research - Part A, 2013, 101, 3438-3446.                                                               | 4.0  | 84        |
| 70 | Stimuli-responsive nanocarriers for delivery of bone therapeutics – Barriers and progresses. Journal of Controlled Release, 2018, 273, 51-67.                                                                                                    | 9.9  | 84        |
| 71 | Stimuliâ€Responsive Thin Coatings Using Elastinâ€Like Polymers for Biomedical Applications. Advanced<br>Functional Materials, 2009, 19, 3210-3218.                                                                                               | 14.9 | 83        |
| 72 | Fabrication of Hydrogel Particles of Defined Shapes Using Superhydrophobicâ€Hydrophilic<br>Micropatterns. Advanced Materials, 2016, 28, 7613-7619.                                                                                               | 21.0 | 83        |

| #  | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Dexamethasone-loaded scaffolds prepared by supercritical-assisted phase inversion. Acta<br>Biomaterialia, 2009, 5, 2054-2062.                                                                                                                          | 8.3  | 82        |
| 74 | Micro/nano-structured superhydrophobic surfaces in the biomedical field: part II: applications overview. Nanomedicine, 2015, 10, 271-297.                                                                                                              | 3.3  | 81        |
| 75 | Silk hydrogels from non-mulberry and mulberry silkworm cocoons processed with ionic liquids. Acta<br>Biomaterialia, 2013, 9, 8972-8982.                                                                                                                | 8.3  | 79        |
| 76 | Preparation of starch-based scaffolds for tissue engineering by supercritical immersion precipitation.<br>Journal of Supercritical Fluids, 2009, 49, 279-285.                                                                                          | 3.2  | 76        |
| 77 | Multilayered Hierarchical Capsules Providing Cell Adhesion Sites. Biomacromolecules, 2013, 14, 743-751.                                                                                                                                                | 5.4  | 75        |
| 78 | Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: Physicochemical<br>characterization and assessment of rat bone marrow stromal cell viability. Journal of Biomedical<br>Materials Research - Part A, 2009, 91A, 175-186. | 4.0  | 73        |
| 79 | Chitosan/bioactive glass nanoparticles scaffolds with shape memory properties. Carbohydrate Polymers, 2015, 123, 39-45.                                                                                                                                | 10.2 | 72        |
| 80 | In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening. Acta<br>Biomaterialia, 2019, 94, 392-409.                                                                                                                    | 8.3  | 72        |
| 81 | Microparticles in Contact with Cells: From Carriers to Multifunctional Tissue Modulators. Trends in Biotechnology, 2019, 37, 1011-1028.                                                                                                                | 9.3  | 72        |
| 82 | Genipinâ€Modified Silkâ€Fibroin Nanometric Nets. Macromolecular Bioscience, 2008, 8, 766-774.                                                                                                                                                          | 4.1  | 71        |
| 83 | Engineering Biomolecular Microenvironments for Cell Instructive Biomaterials. Advanced Healthcare<br>Materials, 2014, 3, 797-810.                                                                                                                      | 7.6  | 71        |
| 84 | A novel hanging spherical drop system for the generation of cellular spheroids and high throughput combinatorial drug screening. Biomaterials Science, 2015, 3, 581-585.                                                                               | 5.4  | 70        |
| 85 | Magnetic composite biomaterials for tissue engineering. Biomaterials Science, 2014, 2, 812-818.                                                                                                                                                        | 5.4  | 67        |
| 86 | Drug nano-reservoirs synthesized using layer-by-layer technologies. Biotechnology Advances, 2015, 33,<br>1310-1326.                                                                                                                                    | 11.7 | 67        |
| 87 | Chitosan microparticles as injectable scaffolds for tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2008, 2, 378-380.                                                                                                     | 2.7  | 65        |
| 88 | New biotextiles for tissue engineering: Development, characterization and in vitro cellular viability.<br>Acta Biomaterialia, 2013, 9, 8167-8181.                                                                                                      | 8.3  | 65        |
| 89 | Cell Surface Engineering to Control Cellular Interactions. ChemNanoMat, 2016, 2, 376-384.                                                                                                                                                              | 2.8  | 65        |
| 90 | Iron Gall Ink Revisited: In Situ Oxidation of Fe(II)–Tannin Complex for Fluidicâ€Interface Engineering.<br>Advanced Materials, 2018, 30, e1805091.                                                                                                     | 21.0 | 65        |

| #   | Article                                                                                                                                                                                  | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Functionalized superhydrophobic biomimetic chitosan-based films. Carbohydrate Polymers, 2010, 81, 140-144.                                                                               | 10.2 | 64        |
| 92  | Recent Progress on Polysaccharide-Based Hydrogels for Controlled Delivery of Therapeutic<br>Biomolecules. ACS Biomaterials Science and Engineering, 2021, 7, 4102-4127.                  | 5.2  | 64        |
| 93  | Superhydrophobic Surfaces Engineered Using Diatomaceous Earth. ACS Applied Materials &<br>Interfaces, 2013, 5, 4202-4208.                                                                | 8.0  | 63        |
| 94  | Micro-/nano-structured superhydrophobic surfaces in the biomedical field: part I: basic concepts and biomimetic approaches. Nanomedicine, 2015, 10, 103-119.                             | 3.3  | 63        |
| 95  | Photo-Cross-Linked Laminarin-Based Hydrogels for Biomedical Applications. Biomacromolecules, 2016, 17, 1602-1609.                                                                        | 5.4  | 63        |
| 96  | Chitosan/Chondroitin Sulfate Membranes Produced by Polyelectrolyte Complexation for Cartilage Engineering. Biomacromolecules, 2016, 17, 2178-2188.                                       | 5.4  | 62        |
| 97  | Semipermeable Capsules Wrapping a Multifunctional and Self-regulated Co-culture Microenvironment for Osteogenic Differentiation. Scientific Reports, 2016, 6, 21883.                     | 3.3  | 62        |
| 98  | Multi-layer pre-vascularized magnetic cell sheets for bone regeneration. Biomaterials, 2020, 231, 119664.                                                                                | 11.4 | 62        |
| 99  | Dynamic mechanical behavior of starch-based scaffolds in dry and physiologically simulated conditions: Effect of porosity and pore size. Acta Biomaterialia, 2008, 4, 950-959.           | 8.3  | 60        |
| 100 | Chitosan/bioactive glass nanoparticles composites for biomedical applications. Biomedical Materials<br>(Bristol), 2012, 7, 054104.                                                       | 3.3  | 60        |
| 101 | Bioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications. Nanomedicine, 2013, 8, 359-378.                | 3.3  | 60        |
| 102 | Modification of paper using polyhydroxybutyrate to obtain biomimetic superhydrophobic substrates.<br>Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 416, 51-55. | 4.7  | 59        |
| 103 | Role of superhydrophobicity in the biological activity of fibronectin at the cell–material interface.<br>Soft Matter, 2011, 7, 10803.                                                    | 2.7  | 58        |
| 104 | Biomimetic Miniaturized Platform Able to Sustain Arrays of Liquid Droplets for Highâ€Throughput<br>Combinatorial Tests. Advanced Functional Materials, 2014, 24, 5096-5103.              | 14.9 | 58        |
| 105 | pH Responsiveness of Multilayered Films and Membranes Made of Polysaccharides. Langmuir, 2015, 31, 11318-11328.                                                                          | 3.5  | 58        |
| 106 | Monoâ€dispersed bioactive glass nanospheres: Preparation and effects on biomechanics of mammalian<br>cells. Journal of Biomedical Materials Research - Part A, 2010, 95A, 747-754.       | 4.0  | 57        |
| 107 | From nano- to macro-scale: nanotechnology approaches for spatially controlled delivery of bioactive factors for bone and cartilage engineering. Nanomedicine, 2012, 7, 1045-1066.        | 3.3  | 57        |
| 108 | Liquified chitosan–alginate multilayer capsules incorporating poly( <scp> </scp> -lactic acid)<br>microparticles as cell carriers. Soft Matter, 2013, 9, 2125-2130.                      | 2.7  | 57        |

| #   | Article                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Myoconductive and osteoinductive free-standing polysaccharide membranes. Acta Biomaterialia, 2015, 15, 139-149.                                                                                                                                                | 8.3  | 57        |
| 110 | Surface Engineered Carboxymethylchitosan/Poly(amidoamine) Dendrimer Nanoparticles for<br>Intracellular Targeting. Advanced Functional Materials, 2008, 18, 1840-1853.                                                                                          | 14.9 | 56        |
| 111 | Recent advances on open fluidic systems for biomedical applications: A review. Materials Science and Engineering C, 2019, 97, 851-863.                                                                                                                         | 7.3  | 56        |
| 112 | Perspectives on: Supercritical Fluid Technology for 3D Tissue Engineering Scaffold Applications.<br>Journal of Bioactive and Compatible Polymers, 2009, 24, 385-400.                                                                                           | 2.1  | 55        |
| 113 | Multifunctional Compartmentalized Capsules with a Hierarchical Organization from the Nano to the Macro Scales. Biomacromolecules, 2013, 14, 2403-2410.                                                                                                         | 5.4  | 55        |
| 114 | Adhesive free-standing multilayer films containing sulfated levan for biomedical applications. Acta<br>Biomaterialia, 2018, 69, 183-195.                                                                                                                       | 8.3  | 55        |
| 115 | Strontium-Doped Bioactive Glass Nanoparticles in Osteogenic Commitment. ACS Applied Materials & amp; Interfaces, 2018, 10, 23311-23320.                                                                                                                        | 8.0  | 55        |
| 116 | Thermoresponsive poly( <i>N</i> â€isopropylacrylamide)â€ <i>g</i> â€methylcellulose hydrogel as a<br>threeâ€dimensional extracellular matrix for cartilageâ€engineered applications. Journal of Biomedical<br>Materials Research - Part A, 2011, 98A, 596-603. | 4.0  | 54        |
| 117 | New Thermo-responsive Hydrogels Based on Poly (N-isopropylacrylamide)/ Hyaluronic Acid<br>Semi-interpenetrated Polymer Networks: Swelling Properties and Drug Release Studies. Journal of<br>Bioactive and Compatible Polymers, 2010, 25, 169-184.             | 2.1  | 53        |
| 118 | Compact Saloplastic Membranes of Natural Polysaccharides for Soft Tissue Engineering. Chemistry of<br>Materials, 2015, 27, 7490-7502.                                                                                                                          | 6.7  | 53        |
| 119 | Nanoengineering Hybrid Supramolecular Multilayered Biomaterials Using Polysaccharides and<br>Selfâ€Assembling Peptide Amphiphiles. Advanced Functional Materials, 2017, 27, 1605122.                                                                           | 14.9 | 53        |
| 120 | Nanostructured self-assembled films containing chitosan fabricated at neutral pH. Carbohydrate<br>Polymers, 2010, 80, 570-573.                                                                                                                                 | 10.2 | 52        |
| 121 | Layerâ€Byâ€Layer Technique for Producing Porous Nanostructured 3D Constructs Using Moldable<br>Freeform Assembly of Spherical Templates. Small, 2010, 6, 2644-2648.                                                                                            | 10.0 | 52        |
| 122 | Fabrication and characterization of Eri silk fibers-based sponges for biomedical application. Acta<br>Biomaterialia, 2016, 32, 178-189.                                                                                                                        | 8.3  | 52        |
| 123 | Pectin-coated chitosan microgels crosslinked on superhydrophobic surfaces for 5-fluorouracil<br>encapsulation. Carbohydrate Polymers, 2013, 98, 331-340.                                                                                                       | 10.2 | 51        |
| 124 | Combinatorial cell–3D biomaterials cytocompatibility screening for tissue engineering using<br>bioinspired superhydrophobic substrates. Integrative Biology (United Kingdom), 2012, 4, 318.                                                                    | 1.3  | 50        |
| 125 | Gellan gumâ€hydroxyapatite composite spongyâ€ŀike hydrogels for bone tissue engineering. Journal of<br>Biomedical Materials Research - Part A, 2018, 106, 479-490.                                                                                             | 4.0  | 50        |
| 126 | Poly( <i>N</i> â€isopropylacrylamide) surfaceâ€grafted chitosan membranes as a new substrate for cell<br>sheet engineering and manipulation. Biotechnology and Bioengineering, 2008, 101, 1321-1331.                                                           | 3.3  | 49        |

| #   | Article                                                                                                                                                                                | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Patterned superhydrophobic paper for microfluidic devices obtained by writing and printing.<br>Cellulose, 2013, 20, 2185-2190.                                                         | 4.9  | 49        |
| 128 | High-throughput screening for integrative biomaterials design: exploring advances and new trends.<br>Trends in Biotechnology, 2014, 32, 627-636.                                       | 9.3  | 49        |
| 129 | Towards the design of 3D multiscale instructive tissue engineering constructs: Current approaches and trends. Biotechnology Advances, 2015, 33, 842-855.                               | 11.7 | 49        |
| 130 | Highâ€Throughput Topographic, Mechanical, and Biological Screening of Multilayer Films Containing<br>Musselâ€Inspired Biopolymers. Advanced Functional Materials, 2016, 26, 2745-2755. | 14.9 | 49        |
| 131 | Freeform 3D printing using a continuous viscoelastic supporting matrix. Biofabrication, 2020, 12, 035017.                                                                              | 7.1  | 49        |
| 132 | Unleashing the potential of supercritical fluids for polymer processing in tissue engineering and regenerative medicine. Journal of Supercritical Fluids, 2013, 79, 177-185.           | 3.2  | 48        |
| 133 | Nanostructured Hollow Tubes Based on Chitosan and Alginate Multilayers. Advanced Healthcare<br>Materials, 2014, 3, 433-440.                                                            | 7.6  | 48        |
| 134 | Layer-by-layer assembled cell instructive nanocoatings containing platelet lysate. Biomaterials, 2015,<br>48, 56-65.                                                                   | 11.4 | 48        |
| 135 | GelMA/bioactive silica nanocomposite bioinks for stem cell osteogenic differentiation. Biofabrication, 2021, 13, 035012.                                                               | 7.1  | 48        |
| 136 | Autonomous osteogenic differentiation of hASCs encapsulated in methacrylated gellan-gum hydrogels. Acta Biomaterialia, 2016, 41, 119-132.                                              | 8.3  | 47        |
| 137 | Injectable Biomaterials for Dental Tissue Regeneration. International Journal of Molecular Sciences, 2020, 21, 3442.                                                                   | 4.1  | 47        |
| 138 | Proteins and Their Peptide Motifs in Acellular Apatite Mineralization of Scaffolds for Tissue<br>Engineering. Tissue Engineering - Part B: Reviews, 2008, 14, 433-445.                 | 4.8  | 46        |
| 139 | Biomimetic Methodology to Produce Polymeric Multilayered Particles for Biotechnological and Biomedical Applications. Small, 2013, 9, 2487-2492.                                        | 10.0 | 46        |
| 140 | Design and functionalization of chitin-based microsphere scaffolds. Green Chemistry, 2013, 15, 3252.                                                                                   | 9.0  | 45        |
| 141 | Microengineered Multicomponent Hydrogel Fibers: Combining Polyelectrolyte Complexation and Microfluidics. ACS Biomaterials Science and Engineering, 2017, 3, 1322-1331.                | 5.2  | 45        |
| 142 | Viscoelastic properties of bone: Mechanical spectroscopy studies on a chicken model. Materials<br>Science and Engineering C, 2005, 25, 145-152.                                        | 7.3  | 44        |
| 143 | Dual Responsive Nanostructured Surfaces for Biomedical Applications. Langmuir, 2011, 27, 8415-8423.                                                                                    | 3.5  | 44        |
| 144 | Micropatterning of Bioactive Glass Nanoparticles on Chitosan Membranes for Spatial Controlled<br>Biomineralization. Langmuir, 2012, 28, 6970-6977.                                     | 3.5  | 43        |

9

| #   | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Magnetic Force-Based Tissue Engineering and Regenerative Medicine. Journal of Biomedical<br>Nanotechnology, 2013, 9, 1129-1136.                                                                                       | 1.1  | 43        |
| 146 | Natural assembly of platelet lysate-loaded nanocarriers into enriched 3D hydrogels for cartilage regeneration. Acta Biomaterialia, 2015, 19, 56-65.                                                                   | 8.3  | 42        |
| 147 | Chitosan–alginate multilayered films with gradients of physicochemical cues. Journal of Materials<br>Chemistry B, 2015, 3, 4555-4568.                                                                                 | 5.8  | 42        |
| 148 | Surface Micro―and Nanoengineering: Applications of Layerâ€by‣ayer Technology as a Versatile Tool to<br>Control Cellular Behavior. Small, 2019, 15, e1901228.                                                          | 10.0 | 42        |
| 149 | Differentiation of mesenchymal stem cells in chitosan scaffolds with double micro and macroporosity. Journal of Biomedical Materials Research - Part A, 2010, 95A, 1182-1193.                                         | 4.0  | 41        |
| 150 | Surfaceâ€Tensionâ€Driven Gradient Generation in a Fluid Stripe for Benchâ€Top and Microwell Applications.<br>Small, 2011, 7, 892-901.                                                                                 | 10.0 | 41        |
| 151 | Combinatorial Onâ€Chip Study of Miniaturized 3D Porous Scaffolds Using a Patterned<br>Superhydrophobic Platform. Small, 2013, 9, 768-778.                                                                             | 10.0 | 41        |
| 152 | Fucoidan Hydrogels Photo-Cross-Linked with Visible Radiation As Matrices for Cell Culture. ACS<br>Biomaterials Science and Engineering, 2016, 2, 1151-1161.                                                           | 5.2  | 41        |
| 153 | Proteinaceous Hydrogels for Bioengineering Advanced 3D Tumor Models. Advanced Science, 2021, 8, 2003129.                                                                                                              | 11.2 | 41        |
| 154 | Functionalized Microparticles Producing Scaffolds in Combination with Cells. Advanced Functional Materials, 2014, 24, 1391-1400.                                                                                      | 14.9 | 39        |
| 155 | Cell Encapsulation Systems Toward Modular Tissue Regeneration: From Immunoisolation to<br>Multifunctional Devices. Advanced Functional Materials, 2020, 30, 1908061.                                                  | 14.9 | 39        |
| 156 | Novel Methodology Based on Biomimetic Superhydrophobic Substrates to Immobilize Cells and<br>Proteins in Hydrogel Spheres for Applications in Bone Regeneration. Tissue Engineering - Part A, 2013,<br>19, 1175-1187. | 3.1  | 38        |
| 157 | Photopolymerizable Platelet Lysate Hydrogels for Customizable 3D Cell Culture Platforms. Advanced<br>Healthcare Materials, 2018, 7, e1800849.                                                                         | 7.6  | 38        |
| 158 | Injectable gellan-gum/hydroxyapatite-based bilayered hydrogel composites for osteochondral tissue regeneration. Applied Materials Today, 2018, 12, 309-321.                                                           | 4.3  | 38        |
| 159 | Processing of novel bioactive polymeric matrixes for tissue engineering using supercritical fluid technology. Materials Science and Engineering C, 2009, 29, 2110-2115.                                               | 7.3  | 37        |
| 160 | Nanostructured and thermoresponsive recombinant biopolymer-based microcapsules for the delivery of active molecules. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 895-902.                           | 3.3  | 37        |
| 161 | Microfluidic Production of Perfluorocarbon-Alginate Core–Shell Microparticles for Ultrasound<br>Therapeutic Applications. Langmuir, 2014, 30, 12391-12399.                                                            | 3.5  | 37        |
| 162 | 3D-bioprinted cancer-on-a-chip: level-up organotypic in vitro models. Trends in Biotechnology, 2022,<br>40, 432-447.                                                                                                  | 9.3  | 36        |

| #   | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Magnetically Labeled Cells with Surfaceâ€Modified Fe <sub>3</sub> O <sub>4</sub> Spherical and<br>Rodâ€Shaped Magnetic Nanoparticles for Tissue Engineering Applications. Advanced Healthcare<br>Materials, 2015, 4, 883-891. | 7.6  | 35        |
| 164 | Nanocoatings containing sulfated polysaccharides prepared by layer-by-layer assembly as models to study cell–material interactions. Journal of Materials Chemistry B, 2013, 1, 4406.                                          | 5.8  | 33        |
| 165 | Cryopreservation of cell laden natural origin hydrogels for cartilage regeneration strategies. Soft<br>Matter, 2013, 9, 875-885.                                                                                              | 2.7  | 33        |
| 166 | Nanoengineering of bioactive glasses: hollow and dense nanospheres. Journal of Nanoparticle<br>Research, 2013, 15, 1.                                                                                                         | 1.9  | 33        |
| 167 | Bio-inspired Aloe vera sponges for biomedical applications. Carbohydrate Polymers, 2014, 112, 264-270.                                                                                                                        | 10.2 | 33        |
| 168 | Bioactıve Glassâ€₽olymer Nanocomposites for Bone Tıssue Regeneration Applicatıons: A Revıew.<br>Advanced Engineering Materials, 2019, 21, 1900287.                                                                            | 3.5  | 33        |
| 169 | Dynamic microfactories co-encapsulating osteoblastic and adipose-derived stromal cells for the biofabrication of bone units. Biofabrication, 2020, 12, 015005.                                                                | 7.1  | 33        |
| 170 | Double network laminarin-boronic/alginate dynamic bioink for 3D bioprinting cell-laden constructs.<br>Biofabrication, 2021, 13, 035045.                                                                                       | 7.1  | 33        |
| 171 | Combining biomimetic principles from the lotus leaf and mussel adhesive: polystyrene films with superhydrophobic and adhesive layers. RSC Advances, 2013, 3, 9352.                                                            | 3.6  | 32        |
| 172 | Strategies for re-vascularization and promotion of angiogenesis in trauma and disease. Biomaterials, 2021, 269, 120628.                                                                                                       | 11.4 | 32        |
| 173 | Calcium-phosphate derived from mineralized algae for bone tissue engineering applications. Materials<br>Letters, 2007, 61, 3495-3499.                                                                                         | 2.6  | 31        |
| 174 | Development of an injectable system based on elastin-like recombinamer particles for tissue engineering applications. Soft Matter, 2011, 7, 6426.                                                                             | 2.7  | 31        |
| 175 | Synthesis and characterization of bioactive biodegradable chitosan composite spheres with shape memory capability. Journal of Non-Crystalline Solids, 2016, 432, 158-166.                                                     | 3.1  | 31        |
| 176 | Responsive laminarin-boronic acid self-healing hydrogels for biomedical applications. Polymer<br>Journal, 2020, 52, 997-1006.                                                                                                 | 2.7  | 31        |
| 177 | Human Platelet Lysatesâ€Based Hydrogels: A Novel Personalized 3D Platform for Spheroid Invasion<br>Assessment. Advanced Science, 2020, 7, 1902398.                                                                            | 11.2 | 31        |
| 178 | Bioactivity and Viscoelastic Characterization of Chitosan/Bioglass® Composite Membranes.<br>Macromolecular Bioscience, 2012, 12, 1106-1113.                                                                                   | 4.1  | 30        |
| 179 | Biocompatible Polymeric Microparticles Produced by a Simple Biomimetic Approach. Langmuir, 2014, 30, 4535-4539.                                                                                                               | 3.5  | 30        |
| 180 | Highly robust hydrogels via a fast, simple and cytocompatible dual crosslinking-based process.<br>Chemical Communications, 2015, 51, 15673-15676.                                                                             | 4.1  | 30        |

| #   | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Liquefied Microcapsules as Dualâ€Microcarriers for 3D+3D Bottomâ€Up Tissue Engineering. Advanced<br>Healthcare Materials, 2019, 8, e1901221.                                                               | 7.6  | 30        |
| 182 | Enzymatic degradation of 3D scaffolds of starch-poly-(É>-caprolactone) prepared by supercritical fluid technology. Polymer Degradation and Stability, 2010, 95, 2110-2117.                                 | 5.8  | 29        |
| 183 | Liquefied Capsules Coated with Multilayered Polyelectrolyte Films for Cell Immobilization. Advanced<br>Engineering Materials, 2011, 13, B218.                                                              | 3.5  | 29        |
| 184 | Chitosan/chondroitin sulfate multilayers as supports for calcium phosphate biomineralization.<br>Materials Letters, 2014, 121, 62-65.                                                                      | 2.6  | 29        |
| 185 | Cellular uptake of multilayered capsules produced with natural and genetically engineered biomimetic macromolecules. Acta Biomaterialia, 2014, 10, 2653-2662.                                              | 8.3  | 29        |
| 186 | Designing biomaterials for tissue engineering based on the deconstruction of the native cellular environment. Materials Letters, 2015, 141, 198-202.                                                       | 2.6  | 29        |
| 187 | In vivo osteogenic differentiation of stem cells inside compartmentalized capsules loaded with co-cultured endothelial cells. Acta Biomaterialia, 2017, 53, 483-494.                                       | 8.3  | 29        |
| 188 | Mechanochemical Patternable ECMâ€Mimetic Hydrogels for Programmed Cell Orientation. Advanced<br>Healthcare Materials, 2020, 9, e1901860.                                                                   | 7.6  | 29        |
| 189 | Effect of solvent-dependent viscoelastic properties of chitosan membranes on the permeation of 2-phenylethanol. Carbohydrate Polymers, 2009, 75, 651-659.                                                  | 10.2 | 28        |
| 190 | Wettable arrays onto superhydrophobic surfaces for bioactivity testing of inorganic nanoparticles.<br>Materials Letters, 2011, 65, 296-299.                                                                | 2.6  | 28        |
| 191 | Platelet lysate membranes as new autologous templates for tissue engineering applications.<br>Inflammation and Regeneration, 2014, 34, 033-044.                                                            | 3.7  | 28        |
| 192 | Fast and Mild Strategy, Using Superhydrophobic Surfaces, to Produce Collagen/Platelet Lysate Gel<br>Beads for Skin Regeneration. Stem Cell Reviews and Reports, 2015, 11, 161-179.                         | 5.6  | 28        |
| 193 | A Closed Chondromimetic Environment within Magneticâ€Responsive Liquified Capsules Encapsulating<br>Stem Cells and Collagen II/TGFâ€Ĵ²3 Microparticles. Advanced Healthcare Materials, 2016, 5, 1346-1355. | 7.6  | 28        |
| 194 | Natural Origin Biomaterials for 4D Bioprinting Tissue‣ike Constructs. Advanced Materials<br>Technologies, 2021, 6, 2100168.                                                                                | 5.8  | 27        |
| 195 | Development of Biomimetic Chitosanâ€Based Hydrogels Using an Elastinâ€Like Polymer. Advanced<br>Engineering Materials, 2010, 12, B37.                                                                      | 3.5  | 26        |
| 196 | <i>In Vivo</i> High-Content Evaluation of Three-Dimensional Scaffolds Biocompatibility. Tissue<br>Engineering - Part C: Methods, 2014, 20, 851-864.                                                        | 2.1  | 26        |
| 197 | Modular Functionalization of Laminarin to Create Value-Added Naturally Derived Macromolecules.<br>Journal of the American Chemical Society, 2020, 142, 19689-19697.                                        | 13.7 | 26        |
| 198 | Chitosan Beads as Templates for Layer-by-Layer Assembly and their Application in the Sustained Release of Bioactive Agents. Journal of Bioactive and Compatible Polymers, 2008, 23, 367-380.               | 2.1  | 25        |

| #   | Article                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Bioinstructive Layer-by-Layer-Coated Customizable 3D Printed Perfusable Microchannels Embedded in<br>Photocrosslinkable Hydrogels for Vascular Tissue Engineering. Biomolecules, 2021, 11, 863.     | 4.0  | 25        |
| 200 | Organotypic 3D decellularized matrix tumor spheroids for high-throughput drug screening.<br>Biomaterials, 2021, 275, 120983.                                                                        | 11.4 | 25        |
| 201 | The influence of surface modified poly( <scp>l</scp> -lactic acid) films on the differentiation of human monocytes into macrophages. Biomaterials Science, 2017, 5, 551-560.                        | 5.4  | 24        |
| 202 | Recent advances in the design of implantable insulin secreting heterocellular islet organoids.<br>Biomaterials, 2021, 269, 120627.                                                                  | 11.4 | 24        |
| 203 | Nanogrooved microdiscs for bottom-up modulation of osteogenic differentiation. Nanoscale, 2019, 11, 16214-16221.                                                                                    | 5.6  | 23        |
| 204 | Oxidized Cashew Gum Scaffolds for Tissue Engineering. Macromolecular Materials and Engineering, 2019, 304, 1800574.                                                                                 | 3.6  | 23        |
| 205 | The effects of platelet lysate patches on the activity of tendon-derived cells. Acta Biomaterialia, 2018,<br>68, 29-40.                                                                             | 8.3  | 22        |
| 206 | On-Chip Assessment of the Protein-Release Profile from 3D Hydrogel Arrays. Analytical Chemistry, 2013, 85, 2391-2396.                                                                               | 6.5  | 21        |
| 207 | Tuneable spheroidal hydrogel particles for cell and drug encapsulation. Soft Matter, 2018, 14, 5622-5627.                                                                                           | 2.7  | 21        |
| 208 | A combinatorial study of nanocomposite hydrogels: on-chip mechanical/viscoelastic and pre-osteoblast interaction characterization. Journal of Materials Chemistry B, 2014, 2, 5627.                 | 5.8  | 20        |
| 209 | Solvent-Free Strategy Yields Size and Shape-Uniform Capsules. Journal of the American Chemical Society, 2017, 139, 1057-1060.                                                                       | 13.7 | 20        |
| 210 | Oneâ€Step Rapid Fabrication of Cellâ€Only Living Fibers. Advanced Materials, 2020, 32, 1906305.                                                                                                     | 21.0 | 20        |
| 211 | Design Advances in Particulate Systems for Biomedical Applications. Advanced Healthcare Materials, 2016, 5, 1687-1723.                                                                              | 7.6  | 19        |
| 212 | Multilayered Hollow Tubes as Blood Vessel Substitutes. ACS Biomaterials Science and Engineering, 2016, 2, 2304-2314.                                                                                | 5.2  | 19        |
| 213 | The potential of cashew gum functionalization as building blocks for layer-by-layer films.<br>Carbohydrate Polymers, 2017, 174, 849-857.                                                            | 10.2 | 19        |
| 214 | Multilayered Films Produced by Layer-by-Layer Assembly of Chitosan and Alginate as a Potential<br>Platform for the Formation of Human Adipose-Derived Stem Cell aggregates. Polymers, 2017, 9, 440. | 4.5  | 19        |
| 215 | Antibacterial free-standing polysaccharide composite films inspired by the sea. International Journal of Biological Macromolecules, 2019, 133, 933-944.                                             | 7.5  | 19        |
| 216 | Bioactive silica nanoparticles with calcium and phosphate for single dose osteogenic differentiation.<br>Materials Science and Engineering C, 2020, 107, 110348.                                    | 7.3  | 19        |

| #   | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Screening of dual chemo-photothermal cellular nanotherapies in organotypic breast cancer 3D spheroids. Journal of Controlled Release, 2021, 331, 85-102.                                                                              | 9.9  | 19        |
| 218 | Enhanced Cell Affinity of Chitosan Membranes Mediated by Superficial Cross-Linking: A<br>Straightforward Method Attainable by Standard Laboratory Procedures. Biomacromolecules, 2014, 15,<br>291-301.                                | 5.4  | 18        |
| 219 | Sequential ionic and thermogelation of chitosan spherical hydrogels prepared using<br>superhydrophobic surfaces to immobilize cells and drugs. Journal of Bioactive and Compatible<br>Polymers, 2014, 29, 50-65.                      | 2.1  | 18        |
| 220 | Engineering Enriched Microenvironments with Gradients of Platelet Lysate in Hydrogel Fibers.<br>Biomacromolecules, 2016, 17, 1985-1997.                                                                                               | 5.4  | 18        |
| 221 | Sequentially Moldable and Bondable Four-Dimensional Hydrogels Compatible with Cell Encapsulation.<br>Biomacromolecules, 2018, 19, 2742-2749.                                                                                          | 5.4  | 17        |
| 222 | Design Principles and Multifunctionality in Cell Encapsulation Systems for Tissue Regeneration.<br>Advanced Healthcare Materials, 2018, 7, e1701444.                                                                                  | 7.6  | 17        |
| 223 | Bone marrow stromal cells on a three-dimensional bioactive fiber mesh undergo osteogenic<br>differentiation in the absence of osteogenic media supplements: The effect of silanol groups. Acta<br>Biomaterialia, 2014, 10, 4175-4185. | 8.3  | 16        |
| 224 | Screening of Nanocomposite Scaffolds Arrays Using Superhydrophobicâ€Wettable Micropatterns.<br>Advanced Functional Materials, 2017, 27, 1701219.                                                                                      | 14.9 | 16        |
| 225 | Threeâ€Dimensional Osteosarcoma Models for Advancing Drug Discovery and Development. Advanced Therapeutics, 2019, 2, 1800108.                                                                                                         | 3.2  | 16        |
| 226 | Minimalist Tissue Engineering Approaches Using Low Materialâ€Based Bioengineered Systems. Advanced<br>Healthcare Materials, 2021, 10, e2002110.                                                                                       | 7.6  | 16        |
| 227 | Bioinspired methodology for preparing magnetic responsive chitosan beads to be integrated in a tubular bioreactor for biomedical applications. Biomedical Materials (Bristol), 2013, 8, 045008.                                       | 3.3  | 15        |
| 228 | Biomimetic click assembled multilayer coatings exhibiting responsive properties. Materials Today<br>Chemistry, 2017, 4, 150-163.                                                                                                      | 3.5  | 15        |
| 229 | Injectable Hyaluronic Acid Hydrogels Enriched with Platelet Lysate as a Cryostable Off-the-Shelf<br>System for Cell-Based Therapies. Regenerative Engineering and Translational Medicine, 2017, 3, 53-69.                             | 2.9  | 15        |
| 230 | <sup></sup> Engineering Membranes for Bone Regeneration. Tissue Engineering - Part A, 2017, 23, 1502-1533.                                                                                                                            | 3.1  | 15        |
| 231 | Coculture of Spheroids/2D Cell Layers Using a Miniaturized Patterned Platform as a Versatile Method<br>to Produce Scaffoldâ€Free Tissue Engineering Building Blocks. Advanced Biology, 2018, 2, 1700069.                              | 3.0  | 15        |
| 232 | Self-Assembled Bioactive Colloidal Gels as Injectable Multiparticle Shedding Platforms. ACS Applied<br>Materials & Interfaces, 2020, 12, 31282-31291.                                                                                 | 8.0  | 15        |
| 233 | Enzymatically degradable, starch-based layer-by-layer films: application to cytocompatible single-cell nanoencapsulation. Soft Matter, 2020, 16, 6063-6071.                                                                           | 2.7  | 15        |
| 234 | Cell Behavior within Nanogrooved Sandwich Culture Systems. Small, 2020, 16, e2001975.                                                                                                                                                 | 10.0 | 15        |

| #   | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Hipster microcarriers: exploring geometrical and topographical cues of non-spherical microcarriers in biomedical applications. Materials Horizons, 2022, 9, 908-933.                                                                              | 12.2 | 15        |
| 236 | Partial Coated Stem Cells with Bioinspired Silica as New Generation of Cellular Hybrid Materials.<br>Advanced Functional Materials, 2021, 31, 2009619.                                                                                            | 14.9 | 14        |
| 237 | Combinatorial Effect of Silicon and Calcium Release from Starch-Based Scaffolds on Osteogenic<br>Differentiation of Human Adipose Stem Cells. ACS Biomaterials Science and Engineering, 2015, 1,<br>760-770.                                      | 5.2  | 13        |
| 238 | Injectable PEGylated fibrinogen cell-laden microparticles made with a continuous solvent- and oil-free preparation method. Acta Biomaterialia, 2015, 13, 78-87.                                                                                   | 8.3  | 13        |
| 239 | Compartmentalized bioencapsulated liquefied 3D macro-construct by perfusion-based layer-by-layer technique. RSC Advances, 2015, 5, 2511-2516.                                                                                                     | 3.6  | 13        |
| 240 | Dynamic Electrophoretic Assembly of Metal–Phenolic Films: Accelerated Formation and Cytocompatible Detachment. Chemistry of Materials, 2020, 32, 7746-7753.                                                                                       | 6.7  | 13        |
| 241 | Oneâ€Step Allâ€Aqueous Interfacial Assembly of Robust Membranes for Longâ€Term Encapsulation and<br>Culture of Adherent Stem/Stromal Cells. Advanced Healthcare Materials, 2021, 10, e2100266.                                                    | 7.6  | 13        |
| 242 | A nanotectonics approach to produce hierarchically organized bioactive glass nanoparticles-based macrospheres. Nanoscale, 2012, 4, 6293.                                                                                                          | 5.6  | 12        |
| 243 | Synthesis and characterization of sensitive hydrogels based on semiâ€interpenetrated networks of<br>poly[2â€ethylâ€(2â€pyrrolidone) methacrylate] and hyaluronic acid. Journal of Biomedical Materials<br>Research - Part A, 2013, 101A, 157-166. | 4.0  | 12        |
| 244 | Flexible method for fabricating protein patterns on superhydrophobic platforms controlled by magnetic field. Biomaterials Science, 2017, 5, 408-411.                                                                                              | 5.4  | 12        |
| 245 | Bioactive Hydrogel Marbles. Scientific Reports, 2018, 8, 15215.                                                                                                                                                                                   | 3.3  | 12        |
| 246 | Geometrically Controlled Liquefied Capsules for Modular Tissue Engineering Strategies. Advanced<br>Biology, 2020, 4, e2000127.                                                                                                                    | 3.0  | 12        |
| 247 | Synthesis and characterization of scaffolds produced under mild conditions based on oxidized cashew gums and carboxyethyl chitosan. International Journal of Biological Macromolecules, 2021, 176, 26-36.                                         | 7.5  | 12        |
| 248 | New insights into the biomimetic design and biomedical applications of bioengineered bone microenvironments. APL Bioengineering, 2021, 5, 041507.                                                                                                 | 6.2  | 12        |
| 249 | Fabrication of Quasiâ€2D Shapeâ€Tailored Microparticles using Wettability Contrastâ€Based Platforms.<br>Advanced Materials, 2021, 33, e2007695.                                                                                                   | 21.0 | 11        |
| 250 | Core–shell microcapsules: biofabrication and potential applications in tissue engineering and regenerative medicine. Biomaterials Science, 2022, 10, 2122-2153.                                                                                   | 5.4  | 11        |
| 251 | Human Proteinâ€Based Porous Scaffolds as Platforms for Xenoâ€Free 3D Cell Culture. Advanced<br>Healthcare Materials, 2022, 11, e2102383.                                                                                                          | 7.6  | 11        |
| 252 | Open Fluidics: A Cell Culture Flow System Developed Over Wettability Contrastâ€Based Chips. Advanced<br>Healthcare Materials, 2017, 6, 1700638.                                                                                                   | 7.6  | 10        |

| #   | Article                                                                                                                                                                              | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 253 | Mesenchymal Stem Cells Relevance in Multicellular Bioengineered 3D In Vitro Tumor Models.<br>Biotechnology Journal, 2017, 12, 1700079.                                               | 3.5  | 10        |
| 254 | An Immunomodulatory Miniaturized 3D Screening Platform Using Liquefied Capsules. Advanced<br>Healthcare Materials, 2021, 10, 2001993.                                                | 7.6  | 10        |
| 255 | Self-glucose feeding hydrogels by enzyme empowered degradation for 3D cell culture. Materials<br>Horizons, 2022, 9, 694-707.                                                         | 12.2 | 10        |
| 256 | BSA/HSA ratio modulates the properties of Ca2+-induced cold gelation scaffolds. International<br>Journal of Biological Macromolecules, 2016, 89, 535-544.                            | 7.5  | 9         |
| 257 | Metabolomic Applications in Stem Cell Research: a Review. Stem Cell Reviews and Reports, 2021, 17, 2003-2024.                                                                        | 3.8  | 9         |
| 258 | Screening of perfused combinatorial 3D microenvironments for cell culture. Acta Biomaterialia, 2019,<br>96, 222-236.                                                                 | 8.3  | 8         |
| 259 | Microparticles orchestrating cell fate in bottom-up approaches. Current Opinion in Biotechnology, 2022, 73, 276-281.                                                                 | 6.6  | 8         |
| 260 | Designing highly customizable human based platforms for cell culture using proteins from the amniotic membrane. Materials Science and Engineering C, 2022, 134, 112574.              | 7.3  | 8         |
| 261 | Engineering mammalian living materials towards clinically relevant therapeutics. EBioMedicine, 2021, 74, 103717.                                                                     | 6.1  | 8         |
| 262 | Bioengineered Hierarchical Bonelike Compartmentalized Microconstructs Using Nanogrooved<br>Microdiscs. ACS Applied Materials & Interfaces, 2022, 14, 19116-19128.                    | 8.0  | 8         |
| 263 | Efficient Singleâ€Đose Induction of Osteogenic Differentiation of Stem Cells Using Multiâ€Bioactive<br>Hybrid Nanocarriers. Advanced Biology, 2020, 4, e2000123.                     | 3.0  | 7         |
| 264 | Leachableâ€Free Fabrication of Hydrogel Foams Enabling Homogeneous Viability of Encapsulated Cells in<br>Largeâ€Volume Constructs. Advanced Healthcare Materials, 2020, 9, e2000543. | 7.6  | 7         |
| 265 | Chemical modification strategies to prepare advanced protein-based biomaterials. Biomaterials and Biosystems, 2021, 1, 100010.                                                       | 2.2  | 7         |
| 266 | NMR Metabolomics Assessment of Osteogenic Differentiation of Adipose-Tissue-Derived Mesenchymal<br>Stem Cells. Journal of Proteome Research, 2022, 21, 654-670.                      | 3.7  | 7         |
| 267 | Advances in bioengineering pancreatic tumor-stroma physiomimetic Biomodels. Biomaterials, 2022, 287, 121653.                                                                         | 11.4 | 7         |
| 268 | Nanomaterials for Biomedical Applications. Biotechnology Journal, 2020, 15, e2000574.                                                                                                | 3.5  | 6         |
| 269 | Design of Proteinâ€Based Liquefied Cell‣aden Capsules with Bioinspired Adhesion for Tissue<br>Engineering. Advanced Healthcare Materials, 2021, 10, e2100782.                        | 7.6  | 6         |
| 270 | Emerging modulators for osteogenic differentiation: a combination of chemical and topographical cues for bone microenvironment engineering. Soft Matter, 2022, 18, 3107-3119.        | 2.7  | 6         |

| #   | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 271 | Endo- and Exometabolome Crosstalk in Mesenchymal Stem Cells Undergoing Osteogenic<br>Differentiation. Cells, 2022, 11, 1257.                                                                                          | 4.1  | 6         |
| 272 | Bone Tissue Disorders: Healing Through Coordination Chemistry. Chemistry - A European Journal, 2020, 26, 15416-15437.                                                                                                 | 3.3  | 5         |
| 273 | Freestanding Magnetic Microtissues for Tissue Engineering Applications. Advanced Healthcare<br>Materials, 2022, 11, e2101532.                                                                                         | 7.6  | 5         |
| 274 | Bioengineering the human bone marrow microenvironment in liquefied compartments: A promising approach for the recapitulation of osteovascular niches. Acta Biomaterialia, 2022, 149, 167-178.                         | 8.3  | 5         |
| 275 | The Therapeutic Potential of Hematopoietic Stem Cells in Bone Regeneration. Tissue Engineering - Part<br>B: Reviews, 2021, , .                                                                                        | 4.8  | 4         |
| 276 | Bioinspired biomaterials to develop cell-rich spherical microtissues for 3D in vitro tumor modeling. , 2020, , 43-65.                                                                                                 |      | 3         |
| 277 | Layer-by-layer assembly: Layer-By-Layer Technique for Producing Porous Nanostructured 3D<br>Constructs Using Moldable Freeform Assembly of Spherical Templates (Small 23/2010). Small, 2010, 6,<br>2643-2643.         | 10.0 | 2         |
| 278 | Correction to "Multilayered Hierarchical Capsules Providing Cell Adhesion Sites―<br>Biomacromolecules, 2013, 14, 1250-1250.                                                                                           | 5.4  | 2         |
| 279 | Cell-Based Microarrays Using Superhydrophobic Platforms Patterned with Wettable Regions.<br>Methods in Molecular Biology, 2018, 1771, 11-26.                                                                          | 0.9  | 2         |
| 280 | Engineering Strategies for Allogeneic Solid Tissue Acceptance. Trends in Molecular Medicine, 2021, 27, 572-587.                                                                                                       | 6.7  | 2         |
| 281 | BIOMIMETIC SUPERHYDROPHOBIC SURFACES. World Scientific Series in Nanoscience and Nanotechnology, 2014, , 153-180.                                                                                                     | 0.1  | 1         |
| 282 | 3D Cell Culture: Fabrication of Hydrogel Particles of Defined Shapes Using<br>Superhydrophobic-Hydrophilic Micropatterns (Adv. Mater. 35/2016). Advanced Materials, 2016, 28,<br>7552-7552.                           | 21.0 | 1         |
| 283 | Thin Silicaâ€Based Microsheets with Controlled Geometry. European Journal of Inorganic Chemistry, 2020, 2020, 1574-1578.                                                                                              | 2.0  | 1         |
| 284 | Osteogenic Differentiation: Efficient Singleâ€Dose Induction of Osteogenic Differentiation of Stem<br>Cells Using Multiâ€Bioactive Hybrid Nanocarriers (Adv. Biosys. 11/2020). Advanced Biology, 2020, 4,<br>2070112. | 3.0  | 0         |
| 285 | Cell-based Soft Biomaterials. RSC Soft Matter, 2021, , 720-749.                                                                                                                                                       | 0.4  | 0         |
| 286 | Biomimetic Materials: Smart Polymer Surfaces for Tissue Engineering. , 0, , 932-946.                                                                                                                                  |      | 0         |
| 287 | Biomimetic Materials: Smart Polymer Surfaces for Tissue Engineering. , 2017, , 214-228.                                                                                                                               |      | 0         |
| 288 | Nanoscale design in biomineralization for developing new biomaterials. , 2022, , 345-384.                                                                                                                             |      | 0         |