


## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5317315/publications.pdf Version: 2024-02-01



MINTH

| #  | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Isolation, Identification, and Analysis of Potential Functions of Culturable Bacteria Associated with<br>an Invasive Gall Wasp, Leptocybe invasa. Microbial Ecology, 2022, 83, 151-166.                        | 2.8  | 7         |
| 2  | Preinvasion Assessment of Exotic Bark Beetle-Vectored Fungi to Detect Tree-Killing Pathogens.<br>Phytopathology, 2022, 112, 261-270.                                                                           | 2.2  | 12        |
| 3  | Identification of Chemosensory Genes Based on the Antennal Transcriptomic Analysis of Plagiodera versicolora. Insects, 2022, 13, 36.                                                                           | 2.2  | 11        |
| 4  | Metabolic and immunological effects of gut microbiota in leaf beetles at the local and systemic levels. Integrative Zoology, 2021, 16, 313-323.                                                                | 2.6  | 41        |
| 5  | Variation of gut microbiota caused by an imbalance diet is detrimental to bugs' survival. Science of the Total Environment, 2021, 771, 144880.                                                                 | 8.0  | 35        |
| 6  | Direct and Indirect Effects of Invasive vs. Native Ant-Hemipteran Mutualism: A Meta-Analysis That<br>Supports the Mutualism Intensity Hypothesis. Agronomy, 2021, 11, 2323.                                    | 3.0  | 5         |
| 7  | An invasive beetle–fungus complex is maintained by fungal nutritional-compensation mediated by bacterial volatiles. ISME Journal, 2020, 14, 2829-2842.                                                         | 9.8  | 17        |
| 8  | Gut microbiota in an invasive bark beetle infected by a pathogenic fungus accelerates beetle mortality.<br>Journal of Pest Science, 2019, 92, 343-351.                                                         | 3.7  | 62        |
| 9  | Gut commensal bacteria in biological invasions. Integrative Zoology, 2019, 14, 613-618.                                                                                                                        | 2.6  | 21        |
| 10 | Chemical camouflage: a key process in shaping an ant-treehopper and fig-fig wasp mutualistic network.<br>Scientific Reports, 2018, 8, 1833.                                                                    | 3.3  | 9         |
| 11 | Comparative analysis of the immune system of an invasive bark beetle, Dendroctonus valens, infected by an entomopathogenic fungus. Developmental and Comparative Immunology, 2018, 88, 65-69.                  | 2.3  | 26        |
| 12 | Bacterial microbiota protect an invasive bark beetle from a pine defensive compound. Microbiome, 2018, 6, 132.                                                                                                 | 11.1 | 53        |
| 13 | HPLC Separation of 2-Ethyl-5(6)-methylpyrazine and Its Electroantennogram and Alarm Activities on Fire Ants (Solenopsis invicta Buren). Molecules, 2018, 23, 1661.                                             | 3.8  | 7         |
| 14 | Ascarosides Promote the Prevalence of Ophiostomatoid Fungi and an Invasive Pathogenic Nematode,<br>Bursaphelenchus xylophilus. Journal of Chemical Ecology, 2018, 44, 701-710.                                 | 1.8  | 16        |
| 15 | Effect of Oxygen on Verbenone Conversion From cis-Verbenol by Gut Facultative Anaerobes of Dendroctonus valens. Frontiers in Microbiology, 2018, 9, 464.                                                       | 3.5  | 14        |
| 16 | Gut Bacterial Communities of Dendroctonus valens and Monoterpenes and Carbohydrates of Pinus<br>tabuliformis at Different Attack Densities to Host Pines. Frontiers in Microbiology, 2018, 9, 1251.            | 3.5  | 7         |
| 17 | Volatiles produced by bacteria alleviate antagonistic effects of one associated fungus on<br>Dendroctonus valens larvae. Science China Life Sciences, 2017, 60, 924-926.                                       | 4.9  | 11        |
| 18 | Bacterial volatile ammonia regulates the consumption sequence of <scp>d</scp> -pinitol and<br><scp>d</scp> -glucose in a fungus associated with an invasive bark beetle. ISME Journal, 2017, 11,<br>2809-2820. | 9.8  | 22        |

Min Lu

| #  | Article                                                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Chemical Signals of Vector Beetle Facilitate the Prevalence of a Native Fungus and the Invasive<br>Pinewood Nematode. Journal of Nematology, 2017, 49, 341-347.                                                                                                                                                            | 0.9 | 1         |
| 20 | Pine Defensive Monoterpene α-Pinene Influences the Feeding Behavior of Dendroctonus valens and Its<br>Gut Bacterial Community Structure. International Journal of Molecular Sciences, 2016, 17, 1734.                                                                                                                      | 4.1 | 38        |
| 21 | Sexual variation of bacterial microbiota of Dendroctonus valens guts and frass in relation to verbenone production. Journal of Insect Physiology, 2016, 95, 110-117.                                                                                                                                                       | 2.0 | 43        |
| 22 | The Role of Symbiotic Microbes in Insect Invasions. Annual Review of Ecology, Evolution, and Systematics, 2016, 47, 487-505.                                                                                                                                                                                               | 8.3 | 82        |
| 23 | Altered Carbohydrates Allocation by Associated Bacteria-fungi Interactions in a Bark Beetle-microbe<br>Symbiosis. Scientific Reports, 2016, 6, 20135.                                                                                                                                                                      | 3.3 | 63        |
| 24 | Does cryptic microbiota mitigate pine resistance to an invasive beetle-fungus complex? Implications for invasion potential. Scientific Reports, 2016, 6, 33110.                                                                                                                                                            | 3.3 | 27        |
| 25 | Invasive bark beetleâ€associated microbes degrade a host defensive monoterpene. Insect Science, 2016, 23,<br>183-190.                                                                                                                                                                                                      | 3.0 | 67        |
| 26 | Inducible pine rosin defense mediates interactions between an invasive insect–fungal complex and newly acquired sympatric fungal associates. Integrative Zoology, 2015, 10, 453-464.                                                                                                                                       | 2.6 | 23        |
| 27 | Gut-Associated Bacteria of Dendroctonus valens and their Involvement in Verbenone Production.<br>Microbial Ecology, 2015, 70, 1012-1023.                                                                                                                                                                                   | 2.8 | 91        |
| 28 | Detection and Identification of the Invasive Sirex noctilio (Hymenoptera: Siricidae) Fungal Symbiont,<br>Amylostereum areolatum (Russulales: Amylostereacea), in China and the Stimulating Effect of Insect<br>Venom on Laccase Production by A. areolatum YQL03. Journal of Economic Entomology, 2015, 108,<br>1136-1147. | 1.8 | 41        |
| 29 | A native fungal symbiont facilitates the prevalence and development of an invasive pathogen–native vector symbiosis. Ecology, 2013, 94, 2817-2826.                                                                                                                                                                         | 3.2 | 41        |
| 30 | Do novel genotypes drive the success of an invasive bark beetle <i>–</i> fungus complex? Implications<br>for potential reinvasion. Ecology, 2011, 92, 2013-2019.                                                                                                                                                           | 3.2 | 65        |
| 31 | Complex interactions among host pines and fungi vectored by an invasive bark beetle. New<br>Phytologist, 2010, 187, 859-866.                                                                                                                                                                                               | 7.3 | 79        |
| 32 | Cross-Attraction between an Exotic and a Native Pine Bark Beetle: A Novel Invasion Mechanism?. PLoS<br>ONE, 2007, 2, e1302.                                                                                                                                                                                                | 2.5 | 11        |
| 33 | Biology and damage traits of emerald ash borer ( <i>Agrilus planipennis</i> Fairmaire) in China. Insect<br>Science, 2007, 14, 367-373.                                                                                                                                                                                     | 3.0 | 94        |