Benedikt Warth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5317105/publications.pdf

Version: 2024-02-01

112 6,491 papers citations

44 h-index 75 g-index

126 all docs 126 docs citations 126 times ranked 6477 citing authors

#	Article	IF	CITATIONS
1	METLIN: A Technology Platform for Identifying Knowns and Unknowns. Analytical Chemistry, 2018, 90, 3156-3164.	6.5	696
2	Metabolomics activity screening for identifying metabolites that modulate phenotype. Nature Biotechnology, 2018, 36, 316-320.	17.5	319
3	Data processing, multi-omic pathway mapping, and metabolite activity analysis using XCMS Online. Nature Protocols, 2018, 13, 633-651.	12.0	207
4	Quantitation of Mycotoxins in Food and Feed from Burkina Faso and Mozambique Using a Modern LC-MS/MS Multitoxin Method. Journal of Agricultural and Food Chemistry, 2012, 60, 9352-9363.	5.2	204
5	Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization. Nature Communications, 2020, 11, 5104.	12.8	177
6	Determination of multi-mycotoxin occurrence in cereals, nuts and their products in Cameroon by liquid chromatography tandem mass spectrometry (LC-MS/MS). Food Control, 2013, 31, 438-453.	5.5	170
7	New insights into the human metabolism of the Fusarium mycotoxins deoxynivalenol and zearalenone. Toxicology Letters, 2013, 220, 88-94.	0.8	165
8	Assessment of human deoxynivalenol exposure using an LC–MS/MS based biomarker method. Toxicology Letters, 2012, 211, 85-90.	0.8	145
9	Mycotoxin exposure in rural residents in northern Nigeria: A pilot study using multi-urinary biomarkers. Environment International, 2014, 66, 138-145.	10.0	129
10	Multiple mycotoxin exposure determined by urinary biomarkers in rural subsistence farmers in the former Transkei, South Africa. Food and Chemical Toxicology, 2013, 62, 217-225.	3.6	123
11	Development and validation of a rapid multiâ€biomarker liquid chromatography/tandem mass spectrometry method to assess human exposure to mycotoxins. Rapid Communications in Mass Spectrometry, 2012, 26, 1533-1540.	1.5	121
12	GC–MS based targeted metabolic profiling identifies changes in the wheat metabolome following deoxynivalenol treatment. Metabolomics, 2015, 11, 722-738.	3.0	117
13	Exposome-Scale Investigations Guided by Global Metabolomics, Pathway Analysis, and Cognitive Computing. Analytical Chemistry, 2017, 89, 11505-11513.	6.5	106
14	Synergistic estrogenic effects of Fusarium and Alternaria mycotoxins in vitro. Archives of Toxicology, 2017, 91, 1447-1460.	4.2	103
15	Bio-monitoring of mycotoxin exposure in Cameroon using a urinary multi-biomarker approach. Food and Chemical Toxicology, 2013, 62, 927-934.	3.6	102
16	METLIN MS2 molecular standards database: a broad chemical and biological resource. Nature Methods, 2020, 17, 953-954.	19.0	102
17	Ultra-sensitive, stable isotope assisted quantification of multiple urinary mycotoxin exposure biomarkers. Analytica Chimica Acta, 2018, 1019, 84-92.	5.4	101
18	Tracking emerging mycotoxins in food: development of an LC-MS/MS method for free and modified Alternaria toxins. Analytical and Bioanalytical Chemistry, 2018, 410, 4481-4494.	3.7	93

#	Article	IF	CITATIONS
19	LC-MS/MS-based multibiomarker approaches for the assessment of human exposure to mycotoxins. Analytical and Bioanalytical Chemistry, 2013, 405, 5687-5695.	3.7	88
20	Fungal and bacterial metabolites of stored maize (Zea mays, L.) from five agro-ecological zones of Nigeria. Mycotoxin Research, 2014, 30, 89-102.	2.3	85
21	A fiber-deprived diet disturbs the fine-scale spatial architecture of the murine colon microbiome. Nature Communications, 2019, 10, 4366.	12.8	82
22	Aberrant gut-microbiota-immune-brain axis development in premature neonates with brain damage. Cell Host and Microbe, 2021, 29, 1558-1572.e6.	11.0	80
23	Mycotoxin risk assessment for consumers of groundnut in domestic markets in Nigeria. International Journal of Food Microbiology, 2017, 251, 24-32.	4.7	78
24	Biomonitoring of Mycotoxins in Human Breast Milk: Current State and Future Perspectives. Chemical Research in Toxicology, 2016, 29, 1087-1097.	3.3	77
25	Natural occurrence of mycotoxins in peanut cake from Nigeria. Food Control, 2012, 27, 338-342.	5. 5	75
26	Investigation of the Hepatic Glucuronidation Pattern of the Fusarium Mycotoxin Deoxynivalenol in Various Species. Chemical Research in Toxicology, 2012, 25, 2715-2717.	3.3	73
27	Incidence and consumer awareness of toxigenic Aspergillus section Flavi and aflatoxin B1 in peanut cake from Nigeria. Food Control, 2013, 30, 596-601.	5 . 5	72
28	Urinary analysis reveals high deoxynivalenol exposure in pregnant women from Croatia. Food and Chemical Toxicology, 2013, 62, 231-237.	3.6	71
29	Deoxynivalenol-sulfates: identification and quantification of novel conjugated (masked) mycotoxins in wheat. Analytical and Bioanalytical Chemistry, 2015, 407, 1033-1039.	3.7	68
30	Monitoring Early Life Mycotoxin Exposures via LC-MS/MS Breast Milk Analysis. Analytical Chemistry, 2018, 90, 14569-14577.	6.5	63
31	Non-synergistic cytotoxic effects of Fusarium and Alternaria toxin combinations in Caco-2 cells. Toxicology Letters, 2016, 241, 1-8.	0.8	59
32	Direct quantification of deoxynivalenol glucuronide in human urine as biomarker of exposure to the Fusarium mycotoxin deoxynivalenol. Analytical and Bioanalytical Chemistry, 2011, 401, 195-200.	3.7	57
33	An integrated in silico/in vitro approach to assess the xenoestrogenic potential of Alternaria mycotoxins and metabolites. Food Chemistry, 2018, 248, 253-261.	8.2	57
34	Quantitation of free and modified Alternaria mycotoxins in European food products by LC-MS/MS. Food Control, 2019, 102, 157-165.	5 . 5	56
35	A Generic Liquid Chromatographyâ^'Tandem Mass Spectrometry Exposome Method for the Determination of Xenoestrogens in Biological Matrices. Analytical Chemistry, 2019, 91, 11334-11342.	6.5	53
36	Utilising an LC-MS/MS-based multi-biomarker approach to assess mycotoxin exposure in the Bangkok metropolitan area and surrounding provinces. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2014, 31, 2040-2046.	2.3	52

#	Article	IF	CITATIONS
37	In vitro glucuronidation kinetics of deoxynivalenol by human and animal microsomes and recombinant human UGT enzymes. Archives of Toxicology, 2015, 89, 949-960.	4.2	52
38	Metabolomics Reveals that Dietary Xenoestrogens Alter Cellular Metabolism Induced by Palbociclib/Letrozole Combination Cancer Therapy. Cell Chemical Biology, 2018, 25, 291-300.e3.	5.2	52
39	First insights into Alternaria multi-toxin in vivo metabolism. Toxicology Letters, 2019, 301, 168-178.	0.8	52
40	From malt to wheat beer: A comprehensive multi-toxin screening, transfer assessment and its influence on basic fermentation parameters. Food Chemistry, 2018, 254, 115-121.	8.2	51
41	<i>Alternaria</i> toxinsâ€"Still emerging?. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 4390-4406.	11.7	51
42	Combinatory estrogenic effects between the isoflavone genistein and the mycotoxins zearalenone and alternariol in vitro. Molecular Nutrition and Food Research, 2017, 61, 1600526.	3.3	50
43	Comparison of Fusarium graminearum Transcriptomes on Living or Dead Wheat Differentiates Substrate-Responsive and Defense-Responsive Genes. Frontiers in Microbiology, 2016, 7, 1113.	3.5	48
44	Mycological Analysis and Multimycotoxins in Maize from Rural Subsistence Farmers in the Former Transkei, South Africa. Journal of Agricultural and Food Chemistry, 2013, 61, 8232-8240.	5.2	47
45	Transfer and Metabolism of the Xenoestrogen Zearalenone in Human Perfused Placenta. Environmental Health Perspectives, 2019, 127, 107004.	6.0	47
46	Nontargeted Analysis Study Reporting Tool: A Framework to Improve Research Transparency and Reproducibility. Analytical Chemistry, 2021, 93, 13870-13879.	6.5	47
47	Fate of mycotoxins in two popular traditional cereal-based beverages (kunu-zaki and pito) from rural Nigeria. LWT - Food Science and Technology, 2015, 60, 137-141.	5.2	46
48	Joint Transcriptomic and Metabolomic Analyses Reveal Changes in the Primary Metabolism and Imbalances in the Subgenome Orchestration in the Bread Wheat Molecular Response to <i>Fusarium graminearum</i> . G3: Genes, Genomes, Genetics, 2015, 5, 2579-2592.	1.8	45
49	Fungal and bacterial metabolites in commercial poultry feed from Nigeria. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2012, 29, 1288-1299.	2.3	43
50	Identification of a novel human deoxynivalenol metabolite enhancing proliferation of intestinal and urinary bladder cells. Scientific Reports, 2016, 6, 33854.	3.3	40
51	Mycotoxin patterns in ear rot infected maize: A comprehensive case study in Nigeria. Food Control, 2017, 73, 1159-1168.	5 . 5	40
52	Delphinidin protects colon carcinoma cells against the genotoxic effects of the mycotoxin altertoxin II. Toxicology Letters, 2018, 284, 136-142.	0.8	40
53	Evaluation of software sensors for on-line estimation of culture conditions in an Escherichia coli cultivation expressing a recombinant protein. Journal of Biotechnology, 2010, 147, 37-45.	3.8	38
54	Fungal and mycotoxin assessment of dried edible mushroom in Nigeria. International Journal of Food Microbiology, 2013, 162, 231-236.	4.7	38

#	Article	IF	Citations
55	Uncommon toxic microbial metabolite patterns in traditionally home-processed maize dish (fufu) consumed in rural Cameroon. Food and Chemical Toxicology, 2017, 107, 10-19.	3.6	38
56	Synthesis of deoxynivalenol-3-ß-D-O-glucuronide for its use as biomarker for dietary deoxynivalenol exposure. World Mycotoxin Journal, 2012, 5, 127-132.	1.4	37
57	Fluorinated Gold Nanoparticles for Nanostructure Imaging Mass Spectrometry. ACS Nano, 2018, 12, 6938-6948.	14.6	37
58	Traditional processing impacts mycotoxin levels and nutritional value of ogi – A maize-based complementary food. Food Control, 2018, 86, 224-233.	5.5	36
59	Multi-microbial metabolites in fonio millet (acha) and sesame seeds in Plateau State, Nigeria. European Food Research and Technology, 2012, 235, 285-293.	3.3	35
60	Risk-Based Chemical Ranking and Generating a Prioritized Human Exposome Database. Environmental Health Perspectives, 2021, 129, 47014.	6.0	35
61	Drug–Exposome Interactions: The Next Frontier in Precision Medicine. Trends in Pharmacological Sciences, 2020, 41, 994-1005.	8.7	34
62	Naturally occurring mixtures of Alternaria toxins: anti-estrogenic and genotoxic effects in vitro. Archives of Toxicology, 2019, 93, 3021-3031.	4.2	33
63	Mycotoxins in uncooked and plate-ready household food from rural northern Nigeria. Food and Chemical Toxicology, 2019, 128, 171-179.	3.6	31
64	Exposure to Mycotoxin-Mixtures via Breast Milk: An Ultra-Sensitive LC-MS/MS Biomonitoring Approach. Frontiers in Chemistry, 2020, 8, 423.	3.6	31
65	The Metabolic Fate of Deoxynivalenol and Its Acetylated Derivatives in a Wheat Suspension Culture: Identification and Detection of DON-15-O-Glucoside, 15-Acetyl-DON-3-O-Glucoside and 15-Acetyl-DON-3-Sulfate. Toxins, 2015, 7, 3112-3126.	3.4	30
66	The Fusarium metabolite culmorin suppresses the in vitro glucuronidation of deoxynivalenol. Archives of Toxicology, 2019, 93, 1729-1743.	4.2	30
67	An Introduction to the Benchmarking and Publications for Non-Targeted Analysis Working Group. Analytical Chemistry, 2021, 93, 16289-16296.	6.5	30
68	Metabolizing Data in the Cloud. Trends in Biotechnology, 2017, 35, 481-483.	9.3	29
69	Fast and reproducible chemical synthesis of zearalenone-14- \hat{l}^2 ,D-glucuronide. World Mycotoxin Journal, 2012, 5, 289-296.	1.4	28
70	Bioavailability, metabolism, and excretion of a complex Alternaria culture extract versus altertoxin II: a comparative study in rats. Archives of Toxicology, 2019, 93, 3153-3167.	4.2	28
71	Impact of phase I metabolism on uptake, oxidative stress and genotoxicity of the emerging mycotoxin alternariol and its monomethyl ether in esophageal cells. Archives of Toxicology, 2017, 91, 1213-1226.	4.2	27
72	The secondary Fusarium metabolite aurofusarin induces oxidative stress, cytotoxicity and genotoxicity in human colon cells. Toxicology Letters, 2018, 284, 170-183.	0.8	26

#	Article	IF	Citations
73	Response of intestinal HT-29 cells to the trichothecene mycotoxin deoxynivalenol and its sulfated conjugates. Toxicology Letters, 2018, 295, 424-437.	0.8	26
74	Longitudinal assessment of mycotoxin co-exposures in exclusively breastfed infants. Environment International, 2020, 142, 105845.	10.0	25
75	Stable Isotope-Assisted Metabolomics for Deciphering Xenobiotic Metabolism in Mammalian Cell Culture. ACS Chemical Biology, 2020, 15, 970-981.	3.4	25
76	Autonomous Multimodal Metabolomics Data Integration for Comprehensive Pathway Analysis and Systems Biology. Analytical Chemistry, 2018, 90, 8396-8403.	6.5	24
77	Assessment of multiple mycotoxins in raw milk of three different animal species in Nigeria. Food Control, 2022, 131, 108258.	5.5	24
78	Mycotoxin exposure biomonitoring in breastfed and non-exclusively breastfed Nigerian children. Environment International, 2022, 158, 106996.	10.0	24
79	Data Streaming for Metabolomics: Accelerating Data Processing and Analysis from Days to Minutes. Analytical Chemistry, 2017, 89, 1254-1259.	6.5	23
80	Bacterial species and mycotoxin contamination associated with locust bean, melon and their fermented products in south-western Nigeria. International Journal of Food Microbiology, 2017, 258, 73-80.	4.7	23
81	Next-generation biomonitoring of the early-life chemical exposome in neonatal and infant development. Nature Communications, 2022, 13, 2653.	12.8	23
82	Natural contaminants in infant food: The case of regulated and emerging mycotoxins. Food Control, 2021, 123, 107676.	5.5	22
83	Mycotoxin-mixture assessment in mother-infant pairs in Nigeria: From mothers' meal to infants' urine. Chemosphere, 2022, 287, 132226.	8.2	22
84	Comparison of single and multi-analyte methods based on LC-MS/MS for mycotoxin biomarker determination in human urine. World Mycotoxin Journal, 2013, 6, 355-366.	1.4	21
85	A mini-survey of moulds and mycotoxins in locally grown and imported wheat grains in Nigeria. Mycotoxin Research, 2017, 33, 59-64.	2.3	20
86	Metabolomics guided pathway analysis reveals link between cancer metastasis, cholesterol sulfate, and phospholipids. Cancer & Metabolism, 2017, 5, 9.	5.0	18
87	Identification and Characterization of Carboxylesterases from Brachypodium distachyon Deacetylating Trichothecene Mycotoxins. Toxins, 2016, 8, 6.	3.4	17
88	Impact of glutathione modulation on the toxicity of the Fusarium mycotoxins deoxynivalenol (DON), NX-3 and butenolide in human liver cells. Toxicology Letters, 2018, 299, 104-117.	0.8	17
89	Combinatory effects of cereulide and deoxynivalenol on in vitro cell viability and inflammation of human Caco-2 cells. Archives of Toxicology, 2020, 94, 833-844.	4.2	17
90	Polyphenol Exposure, Metabolism, and Analysis: A Global Exposomics Perspective. Annual Review of Food Science and Technology, 2021, 12, 461-484.	9.9	17

#	Article	IF	Citations
91	Sulfation of deoxynivalenol, its acetylated derivatives, and T2-toxin. Tetrahedron, 2014, 70, 5260-5266.	1.9	16
92	Impact of Mixture Effects between Emerging Organic Contaminants on Cytotoxicity: A Systems Biological Understanding of Synergism between Tris(1,3-dichloro-2-propyl)phosphate and Triphenyl Phosphate. Environmental Science &	10.0	16
93	A review of microbes and chemical contaminants in dairy products in subâ€Saharan Africa. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 1188-1220.	11.7	16
94	The ripening disorder berry shrivel affects anthocyanin biosynthesis and sugar metabolism in Zweigelt grape berries. Planta, 2018, 247, 471-481.	3.2	15
95	The Fate of Altertoxin II During Tomato Processing Steps at a Laboratory Scale. Frontiers in Nutrition, 2019, 6, 92.	3.7	15
96	Fate of free and modified Alternaria mycotoxins during the production of apple concentrates. Food Control, 2020, 118, 107388.	5.5	15
97	Metabolomics Profiles of Smokers from Two Ethnic Groups with Differing Lung Cancer Risk. Chemical Research in Toxicology, 2020, 33, 2087-2098.	3.3	14
98	Hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry for the quantification of uridine diphosphate-glucose, uridine diphosphate-glucuronic acid, deoxynivalenol and its glucoside: In-house validation and application to wheat. Journal of Chromatography A, 2015, 1423, 183-189.	3.7	13
99	Gut microbiota and undigested food constituents modify toxin composition and suppress the genotoxicity of a naturally occurring mixture of Alternaria toxins in vitro. Archives of Toxicology, 2020, 94, 3541-3552.	4.2	13
100	Quantifying up to 90 polyphenols simultaneously in human bio-fluids by LC-MS/MS. Analytica Chimica Acta, 2022, 1216, 339977.	5.4	13
101	Early-life chemical exposome and gut microbiome development: African research perspectives within a global environmental health context. Trends in Microbiology, 2022, 30, 1084-1100.	7.7	13
102	Fusarium culmorum multi-toxin screening in malting and brewing by-products. LWT - Food Science and Technology, 2018, 98, 642-645.	5.2	12
103	First determination of the highly genotoxic fungal contaminant altertoxin II in a naturally infested apple sample. Emerging Contaminants, 2020, 6, 82-86.	4.9	12
104	In vitro interactions of Alternaria mycotoxins, an emerging class of food contaminants, with the gut microbiota: a bidirectional relationship. Archives of Toxicology, 2021, 95, 2533-2549.	4.2	12
105	Trace analysis of emerging and regulated mycotoxins in infant stool by LC-MS/MS. Analytical and Bioanalytical Chemistry, 2022, 414, 7503-7516.	3.7	11
106	Palbociclib and Fulvestrant Act in Synergy to Modulate Central Carbon Metabolism in Breast Cancer Cells. Metabolites, 2019, 9, 7.	2.9	10
107	PeakBot: machine-learning-based chromatographic peak picking. Bioinformatics, 2022, 38, 3422-3428.	4.1	10
108	Elucidation of xenoestrogen metabolism by non-targeted, stable isotope-assisted mass spectrometry in breast cancer cells. Environment International, 2022, 158, 106940.	10.0	9

#	Article	IF	CITATION
109	Microfiltration results in the loss of analytes and affects the in vitro genotoxicity of a complex mixture of Alternaria toxins. Mycotoxin Research, 2020, 36, 399-408.	2.3	8
110	Assessing Mixture Effects of Cereulide and Deoxynivalenol on Intestinal Barrier Integrity and Uptake in Differentiated Human Caco-2 Cells. Toxins, 2021, 13, 189.	3.4	7
111	N-acetyl cysteine alters the genotoxic and estrogenic properties of Alternaria toxins in naturally occurring mixtures. Emerging Contaminants, 2022, 8, 30-38.	4.9	7
112	Evaluating the Performance of Lateral Flow Devices for Total Aflatoxins with Special Emphasis on Their Robustness under Sub-Saharan Conditions. Toxins, 2021, 13, 742.	3.4	6