Milena JiÅłÄkovÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5316941/publications.pdf

Version: 2024-02-01

103	1,537	23 h-index	36
papers	citations		g-index
103	103	103	842
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Co-Doped Magnesium Oxychloride Composites with Unique Flexural Strength for Construction Use. Materials, 2022, 15, 604.	1.3	1
2	Ultra-high strength multicomponent composites based on reactive magnesia: Tailoring of material properties by addition of 1D and 2D carbon nanoadditives. Journal of Building Engineering, 2022, 50, 104122.	1.6	6
3	Highly-reactive nanoscale MgO precursor for fast synthesis of magnesium oxychlorides. AIP Conference Proceedings, 2022, , .	0.3	0
4	The brucite content calculation in the MOC composites. AIP Conference Proceedings, 2022, , .	0.3	0
5	Thermal properties of mortars with sand/zeolite aggregate. AIP Conference Proceedings, 2022, , .	0.3	0
6	Magnesia-based cement composites with recycled waste tire rubber filler. AIP Conference Proceedings, 2022, , .	0.3	1
7	Enhancement of structural and mechanical properties of magnesium oxychloride cement due to graphene addition. AIP Conference Proceedings, 2022, , .	0.3	0
8	Magnesium Potassium Phosphate Cement-Based Derivatives for Construction Use: Experimental Assessment. Materials, 2022, 15, 1896.	1.3	6
9	Assessment of wood chips ash as efficient admixture in foamed glass-MOC composites. Journal of Materials Research and Technology, 2022, 19, 2287-2300.	2.6	4
10	Magnesium Oxychloride Cement Composites with MWCNT for the Construction Applications. Materials, 2021, 14, 484.	1.3	13
11	Foam Glass Lightened Sorel's Cement Composites Doped with Coal Fly Ash. Materials, 2021, 14, 1103.	1.3	8
12	High-performance magnesium oxychloride composites with silica sand and diatomite. Journal of Materials Research and Technology, 2021, 11, 957-969.	2.6	27
13	MOC Doped with Graphene Nanoplatelets: The Influence of the Mixture Preparation Technology on Its Properties. Materials, 2021, 14, 1450.	1.3	17
14	Regolith-based magnesium oxychloride composites doped by graphene: Novel high-performance building materials for lunar constructions. FlatChem, 2021, 26, 100234.	2.8	10
15	Properties of multi-layer renders with fly ash and boiler slag admixtures for salt-laden masonry. Construction and Building Materials, 2021, 278, 122366.	3.2	19
16	Lightweight Vapor-Permeable Plasters for Building Repair Detailed Experimental Analysis of the Functional Properties. Materials, 2021, 14, 2613.	1.3	7
17	Zeolite Lightweight Repair Renders: Effect of Binder Type on Properties and Salt Crystallization Resistance. Materials, 2021, 14, 3760.	1.3	8
18	MOC-Diatomite Composites Filled with Multi-Walled Carbon Nanotubes. Materials, 2021, 14, 4576.	1.3	5

#	Article	IF	Citations
19	Magnesium oxychloride-graphene composites: Towards high strength and water resistant materials for construction industry. FlatChem, 2021, 29, 100284.	2.8	21
20	The influence of graphene specific surface on material properties of MOC-based composites for construction use. Journal of Building Engineering, 2021, 43, 103193.	1.6	1
21	Effect of Aggregate and Binder Type on the Functional and Durability Parameters of Lightweight Repair Mortars. Sustainability, 2021, 13, 11780.	1.6	7
22	Non-hydrophobized perlite renders for repair and thermal insulation purposes: Influence of different binders on their properties and durability. Construction and Building Materials, 2020, 263, 120617.	3.2	32
23	Low-Carbon Composite Based on MOC, Silica Sand and Ground Porcelain Insulator Waste. Processes, 2020, 8, 829.	1.3	19
24	Towards novel building materials: High-strength nanocomposites based on graphene, graphite oxide and magnesium oxychloride. Applied Materials Today, 2020, 20, 100766.	2.3	24
25	The Impact of Graphene and Diatomite Admixtures on the Performance and Properties of High-Performance Magnesium Oxychloride Cement Composites. Materials, 2020, 13, 5708.	1.3	8
26	Magnesium Oxychloride Cement Composites Lightened with Granulated Scrap Tires and Expanded Glass. Materials, 2020, 13, 4828.	1.3	13
27	Assessment of packing, flowability, hydration kinetics, and strength of blended cements with illitic calcined shale. Construction and Building Materials, 2020, 254, 119042.	3.2	29
28	Magnesium Oxychloride Cement Composites with Silica Filler and Coal Fly Ash Admixture. Materials, 2020, 13, 2537.	1.3	16
29	Diatomite powder as pozzolana active mineral admixture in mortar mix composition. AIP Conference Proceedings, 2020, , .	0.3	1
30	Magnesium Oxybromides MOB-318 and MOB-518: Brominated Analogues of Magnesium Oxychlorides. Applied Sciences (Switzerland), 2020, 10, 4032.	1.3	3
31	Moisture-transport and thermal properties of mortars prepared from blended cement-biomass ash binder. AIP Conference Proceedings, 2020, , .	0.3	0
32	Properties of foamed fine-grained composites containing active mineral admixture. AIP Conference Proceedings, 2020, , .	0.3	0
33	Thermal Stability and Kinetics of Formation of Magnesium Oxychloride Phase 3Mg(OH)2â [™] MgCl2â [™] 8H2O. Materials, 2020, 13, 767.	1.3	28
34	Carbon Dioxide Uptake by MOC-Based Materials. Applied Sciences (Switzerland), 2020, 10, 2254.	1.3	40
35	Synthesis, Structure, and Thermal Stability of Magnesium Oxychloride 5Mg(OH)2â [™] MgCl2â [™] 8H2O. Applied Sciences (Switzerland), 2020, 10, 1683.	1.3	40
36	The influence of elevated temperatures on thermal properties of concrete with crumb rubber. AIP Conference Proceedings, 2020, , .	0.3	0

#	Article	IF	Citations
37	Calculation of the development of the Portlandite content based on FT-IR spectroscopy data. AIP Conference Proceedings, 2020, , .	0.3	O
38	Moisture diffusivity of natural hydraulic lime-based plasters with incorporated perlite aggregate. AIP Conference Proceedings, 2020, , .	0.3	1
39	High temperature dilatometric measurement of MOC. AIP Conference Proceedings, 2020, , .	0.3	0
40	Thermal stability and kinetics of formation of Mg3(OH)5Cl·4 H2O. AIP Conference Proceedings, 2020, , .	0.3	0
41	Is TDR method applicable for moisture content measurement in salt laden materials?. AIP Conference Proceedings, 2020, , .	0.3	2
42	Thermophysical parameters of MOC-based composite with fly ash admixture. AIP Conference Proceedings, 2020, , .	0.3	0
43	Thermal properties of air lime lightweight mortars. AIP Conference Proceedings, 2020, , .	0.3	2
44	Influence of Wood-Based Biomass Ash Admixing on the Structural, Mechanical, Hygric, and Thermal Properties of Air Lime Mortars. Materials, 2019, 12, 2227.	1.3	19
45	Mechanical parameters of different kinds of renders exposed to sodium sulfate solution. AIP Conference Proceedings, 2019, , .	0.3	0
46	Structural, mechanical and thermal properties of lightweight magnesium oxychloride cement concrete. AIP Conference Proceedings, 2019, , .	0.3	2
47	Mechanical and thermal properties of light-weight concrete with incorporated waste tire rubber as coarse aggregate. AIP Conference Proceedings, 2019, , .	0.3	6
48	Mortars with Crushed Lava Granulate for Repair of Damp Historical Buildings. Materials, 2019, 12, 3557.	1.3	20
49	Eco-friendly concrete with scrap-tyre-rubber-based aggregate – Properties and thermal stability. Construction and Building Materials, 2019, 225, 709-722.	3.2	81
50	Properties of cement based mortars enriched with diatomaceous earth. AIP Conference Proceedings, 2019, , .	0.3	3
51	Hygric parameters of lightweight mortar accessed by combined computational-experimental approach. AIP Conference Proceedings, 2019, , .	0.3	0
52	Hygric and thermal properties of lime plasters modified with wood chips ash-based mineral admixture. AIP Conference Proceedings, 2019, , .	0.3	0
53	Complex Characterization and Behavior of Waste Fired Brick Powder-Portland Cement System. Materials, 2019, 12, 1650.	1.3	57
54	Ternary Blended Binder for Production of a Novel Type of Lightweight Repair Mortar. Materials, 2019, 12, 996.	1.3	34

#	Article	IF	Citations
55	Influence of Waste Plastic Aggregate and Water-Repellent Additive on the Properties of Lightweight Magnesium Oxychloride Cement Composite. Applied Sciences (Switzerland), 2019, 9, 5463.	1.3	20
56	Kinetics of formation and thermal stability of Mg2(OH)3Cl·4H2O. AIP Conference Proceedings, 2019, , .	0.3	3
57	Thermal properties of lime-based plasters with expanded glass granulate. AIP Conference Proceedings, 2019, , .	0.3	1
58	Properties of alkali-activated composites containing biomass ash. AIP Conference Proceedings, 2019, , .	0.3	1
59	Biomass ash-based mineral admixture prepared from municipal sewage sludge and its application in cement composites. Clean Technologies and Environmental Policy, 2018, 20, 159-171.	2.1	47
60	Physical and chemical characterization of technogenic pozzolans for the application in blended cements. Construction and Building Materials, 2018, 160, 106-116.	3.2	55
61	Thermal, mechanical and structural properties of mortars for rehabilitation of buildings contaminated by chlorides. AIP Conference Proceedings, 2018, , .	0.3	0
62	Properties of lightweight composite modified by active siliceous admixture. AIP Conference Proceedings, 2018 , , .	0.3	1
63	Moisture diffusivity of hydrophobized lime-based renders. AIP Conference Proceedings, 2018, , .	0.3	0
64	Thermal properties of lightweight concrete with scrap tire rubber-based aggregate. AIP Conference Proceedings, 2018, , .	0.3	2
65	Fabrication of Dodecanol/Diatomite Shape-Stabilized PCM and Its Utilization in Interior Plaster. International Journal of Thermophysics, 2018, 39, 1.	1.0	23
66	Valorization of wood chips ash as an eco-friendly mineral admixture in mortar mix design. Waste Management, 2018, 80, 89-100.	3.7	63
67	Experimental Analysis of MOC Composite with a Waste-Expanded Polypropylene-Based Aggregate. Materials, 2018, 11, 931.	1.3	33
68	The use of coagulated silica as active mineral admixture in cement-based fine grained mortars. AIP Conference Proceedings, 2018, , .	0.3	0
69	Chemical composition, thermal analysis and pozzolanic activity of biomass ash from Miscanthus. AIP Conference Proceedings, 2018, , .	0.3	1
70	Structural, mechanical and hygrothermal properties of lightweight concrete based on the application of waste plastics. Construction and Building Materials, 2018, 180, 1-11.	3.2	95
71	Calculation of k factor function for the carbonation process of lime-based plasters. AIP Conference Proceedings, 2017, , .	0.3	1
72	Thermal properties of light-weight concrete with waste polypropylene aggregate. AIP Conference Proceedings, 2017, , .	0.3	6

#	Article	IF	Citations
73	The use of glass powder as a partial Portland cement replacement. AIP Conference Proceedings, 2017, , .	0.3	2
74	Chemical and thermal analysis of biomass ash from wooden chips and wheat straw combustion. AIP Conference Proceedings, $2017, \ldots$	0.3	2
75	Properties of cement based composites modified using diatomaceous earth. AIP Conference Proceedings, 2017, , .	0.3	3
76	Moisture buffer capacity of cement-lime plasters with enhanced thermal storage capacity. AIP Conference Proceedings, $2017, \ldots$	0.3	3
77	Liquid moisture diffusivity of environmentally exposed plasters accessed by inverse analysis. AIP Conference Proceedings, 2017, , .	0.3	0
78	Thermophysical properties of hydrophobised lime plasters – The influence of ageing. AIP Conference Proceedings, 2017, , .	0.3	0
79	UHPFRC at high temperatures $\hat{a} \in \mathcal{E}$ Simultaneous thermal analysis and thermodilatometry. AIP Conference Proceedings, 2016, , .	0.3	3
80	Computational modeling of latent-heat-storage in PCM modified interior plaster. AIP Conference Proceedings, 2016, , .	0.3	1
81	High-temperature testing of high performance fiber reinforced concrete. AIP Conference Proceedings, 2016, , .	0.3	1
82	Modified lime-cement plasters with enhanced thermal and hygric storage capacity for moderation of interior climate. Energy and Buildings, 2016, 126, 113-127.	3.1	54
83	Thermophysical properties of hydrophobised lime plaster – Experimental analysis of moisture effect. AIP Conference Proceedings, 2016, , .	0.3	4
84	Coagulated silica - a-SiO2 admixture in cement paste. AIP Conference Proceedings, 2016, , .	0.3	6
85	Properties of lightweight cement-based composites containing waste polypropylene. AIP Conference Proceedings, 2016, , .	0.3	5
86	Energy-efficient thermal treatment of sewage sludge for its application in blended cements. Journal of Cleaner Production, 2016, 112, 409-419.	4.6	99
87	Effect of cation type on chloride binding in building stones. AIP Conference Proceedings, 2015, , .	0.3	1
88	Characterization of a lime-pozzolan plaster containing phase change material. AIP Conference Proceedings, 2015, , .	0.3	2
89	In-situ analysis of hygric performance of piaristic monastery building. AIP Conference Proceedings, 2015, , .	0.3	8
90	Applicability of contemporary ceramic bricks for the reconstruction of historical masonry. AIP Conference Proceedings, 2015, , .	0.3	3

#	Article	IF	Citations
91	Parameters describing the coupled water and nitrate transport and storage in materials of historical masonry. AIP Conference Proceedings, 2015, , .	0.3	3
92	Service Life Assessment of Historical Building Envelopes Constructed Using Different Types of Sandstone: A Computational Analysis Based on Experimental Input Data. Scientific World Journal, The, 2014, 2014, 1-12.	0.8	25
93	Theoretical and Experimental Analysis of Moisture-Dependent Thermal Conductivity of Lightweight Ceramic Bricks. International Journal of Thermophysics, 2014, 35, 1912-1921.	1.0	11
94	Experimental Investigation of the Properties of Lime-Based Plaster-Containing PCM for Enhancing the Heat-Storage Capacity of Building Envelopes. International Journal of Thermophysics, 2014, 35, 767-782.	1.0	51
95	Apparent Thermal Properties of Phase-Change Materials: An Analysis Using Differential Scanning Calorimetry and Impulse Method. International Journal of Thermophysics, 2013, 34, 851-864.	1.0	41
96	Salt transport and storage parameters of renovation plasters and their possible effects on restored buildings' walls. Construction and Building Materials, 2011, 25, 1205-1212.	3.2	78
97	Effect of hydrophilic admixtures on moisture and heat transport and storage parameters of mineral wool. Construction and Building Materials, 2006, 20, 425-434.	3.2	48
98	Determination of Moisture Diffusivity using the Time Domain Reflectometry (TDR) Method. Journal of Building Physics, 2006, 30, 59-70.	1.2	37
99	Chloride Binding in Building Materials. Journal of Building Physics, 2006, 29, 189-200.	1.2	25
100	Interior Thermal Insulation System Based on Hydrophilic Mineral Wool. Journal of Building Physics, 2005, 29, 21-35.	1.2	6
101	Thermal and Hygric Parameters of Carbon-fiber-reinforced Cement Composites after Thermal and Mechanical Loading. Journal of Building Physics, 2005, 29, 121-143.	1.2	7
102	System for Testing the Hygrothermal Performance of Multi-Layered Building Envelopes. Journal of Thermal Envelope and Building Science, 2002, 25, 239-249.	0.5	14
103	Influence of Graphite Oxide Addition on the Properties of Magnesium Oxychloride Cement Composites. IOP Conference Series: Materials Science and Engineering, 0, 960, 022080.	0.3	1