
Seung-Jae Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5316673/publications.pdf Version: 2024-02-01

SELING-LAF LEF

#	Article	IF	CITATIONS
1	Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell, 2007, 6, 95-110.	3.0	784
2	Inhibition of Respiration Extends C. elegans Life Span via Reactive Oxygen Species that Increase HIF-1 Activity. Current Biology, 2010, 20, 2131-2136.	1.8	432
3	OASIS 2: online application for survival analysis 2 with features for the analysis of maximal lifespan and healthspan in aging research. Oncotarget, 2016, 7, 56147-56152.	0.8	330
4	Glucose Shortens the Life Span of C. elegans by Downregulating DAF-16/FOXO Activity and Aquaporin Gene Expression. Cell Metabolism, 2009, 10, 379-391.	7.2	299
5	OASIS: Online Application for the Survival Analysis of Lifespan Assays Performed in Aging Research. PLoS ONE, 2011, 6, e23525.	1.1	259
6	Insulin/IGF-1 signaling mutants reprogram ER stress response regulators to promote longevity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9730-9735.	3.3	206
7	C. elegans maximum velocity correlates with healthspan and is maintained in worms with an insulin receptor mutation. Nature Communications, 2015, 6, 8919.	5.8	182
8	Regulation of the Longevity Response to Temperature by Thermosensory Neurons in Caenorhabditis elegans. Current Biology, 2009, 19, 715-722.	1.8	179
9	Direct and Indirect Gene Regulation by a Life-Extending FOXO Protein in C. elegans: Roles for GATA Factors and Lipid Gene Regulators. Cell Metabolism, 2013, 17, 85-100.	7.2	159
10	Tissue entrainment by feedback regulation of insulin gene expression in the endoderm of <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19046-19050.	3.3	155
11	Feedback regulation via AMPK and HIF-1 mediates ROS-dependent longevity in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4458-67.	3.3	151
12	The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Reports, 2016, 49, 81-92.	1.1	144
13	Heat shock factor 1 mediates the longevity conferred by inhibition of TOR and insulin/IGFâ€1 signaling pathways in <i>C. elegans</i> . Aging Cell, 2013, 12, 1073-1081.	3.0	109
14	A lysosomal tetraspanin associated with retinal degeneration identified via a genome-wide screen. EMBO Journal, 2004, 23, 811-822.	3.5	108
15	Survival assays using Caenorhabditis elegans. Molecules and Cells, 2017, 40, 90-99.	1.0	107
16	Ageâ€dependent changes and biomarkers of aging in <i>Caenorhabditis elegans</i> . Aging Cell, 2019, 18, e12853.	3.0	104
17	Light Adaptation through Phosphoinositide-Regulated Translocation of Drosophila Visual Arrestin. Neuron, 2003, 39, 121-132.	3.8	102
18	SREBP and MDT-15 protect <i>C. elegans</i> from glucose-induced accelerated aging by preventing accumulation of saturated fat. Genes and Development, 2015, 29, 2490-2503.	2.7	101

SEUNG-JAE LEE

#	Article	IF	CITATIONS
19	Light-Dependent Translocation of Visual Arrestin Regulated by the NINAC Myosin III. Neuron, 2004, 43, 95-103.	3.8	88
20	The Somatic Reproductive Tissues of C. elegans Promote Longevity through Steroid Hormone Signaling. PLoS Biology, 2010, 8, e1000468.	2.6	85
21	Regulation of life span by mitochondrial respiration: the HIF-1 and ROS connection. Aging, 2011, 3, 304-310.	1.4	80
22	Mitochondria and Organismal Longevity. Current Genomics, 2012, 13, 519-532.	0.7	76
23	Mitochondrial chaperone <scp>HSP</scp> â€60 regulates antiâ€bacterial immunity via p38 <scp>MAP</scp> kinase signaling. EMBO Journal, 2017, 36, 1046-1065.	3.5	66
24	Effects of nutritional components on aging. Aging Cell, 2015, 14, 8-16.	3.0	60
25	RNA surveillance via nonsense-mediated mRNA decay is crucial for longevity in daf-2/insulin/IGF-1 mutant C. elegans. Nature Communications, 2017, 8, 14749.	5.8	59
26	Food-derived sensory cues modulate longevity via distinct neuroendocrine insulin-like peptides. Genes and Development, 2016, 30, 1047-1057.	2.7	56
27	Regulation of the Rhodopsin Protein Phosphatase, RDGC, through Interaction with Calmodulin. Neuron, 2001, 32, 1097-1106.	3.8	52
28	MDT-15/MED15 permits longevity at low temperature via enhancing lipidostasis and proteostasis. PLoS Biology, 2019, 17, e3000415.	2.6	51
29	Precise precursor rebalancing for isoprenoids production by fine control of gapA expression in Escherichia coli. Metabolic Engineering, 2016, 38, 401-408.	3.6	48
30	Myricetin improves endurance capacity and mitochondrial density by activating SIRT1 and PGC-1α. Scientific Reports, 2017, 7, 6237.	1.6	48
31	Inhibition of breast cancer growth and metastasis by a biomimetic peptide. Scientific Reports, 2014, 4, 7139.	1.6	47
32	Rhodopsin kinase activity modulates the amplitude of the visual response in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11874-11879.	3.3	43
33	Advances in transcriptome analysis of human brain aging. Experimental and Molecular Medicine, 2020, 52, 1787-1797.	3.2	41
34	Regulation of lifespan by chemosensory and thermosensory systems: findings in invertebrates and their implications in mammalian aging. Frontiers in Genetics, 2012, 3, 218.	1.1	38
35	Emerging functions of circular RNA in aging. Trends in Genetics, 2021, 37, 819-829.	2.9	36
36	RNA helicase HEL-1 promotes longevity by specifically activating DAF-16/FOXO transcription factor signaling in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4246-55.	3.3	34

SEUNG-JAE LEE

#	Article	IF	CITATIONS
37	Suppression of Constant-Light-Induced Blindness but Not Retinal Degeneration by Inhibition of the Rhodopsin Degradation Pathway. Current Biology, 2004, 14, 2076-2085.	1.8	33
38	Mechanisms of aging-related proteinopathies in Caenorhabditis elegans. Experimental and Molecular Medicine, 2016, 48, e263-e263.	3.2	32
39	elF2A, an initiator tRNA carrier refractory to elF2α kinases, functions synergistically with elF5B. Cellular and Molecular Life Sciences, 2018, 75, 4287-4300.	2.4	31
40	Non-Coding RNAs in Aging. Molecules and Cells, 2019, 42, 379-385.	1.0	31
41	The role of dietary carbohydrates in organismal aging. Cellular and Molecular Life Sciences, 2017, 74, 1793-1803.	2.4	30
42	Korean mistletoe (Viscum album coloratum) extract extends the lifespan of nematodes and fruit flies. Biogerontology, 2014, 15, 153-164.	2.0	27
43	Prefoldin 6 mediates longevity response from heat shock factor 1 to FOXO in <i>C. elegans</i> . Genes and Development, 2018, 32, 1562-1575.	2.7	26
44	Genes That Act Downstream of Sensory Neurons to Influence Longevity, Dauer Formation, and Pathogen Responses in Caenorhabditis elegans. PLoS Genetics, 2012, 8, e1003133.	1.5	24
45	Western Blot Analysis of C. elegans Proteins. Methods in Molecular Biology, 2018, 1742, 213-225.	0.4	24
46	3-D Worm Tracker for Freely Moving C. elegans. PLoS ONE, 2013, 8, e57484.	1.1	23
47	Genetic inhibition of an ATP synthase subunit extends lifespan in C. elegans. Scientific Reports, 2018, 8, 14836.	1.6	23
48	VRK-1 extends life span by activation of AMPK via phosphorylation. Science Advances, 2020, 6, .	4.7	23
49	Inhibition of elongin C promotes longevity and protein homeostasis via <scp>HIF</scp> â€1 in <i>C.Âelegans</i> . Aging Cell, 2015, 14, 995-1002.	3.0	22
50	<i>Caenorhabditis elegans</i> Lipin 1 moderates the lifespanâ€shortening effects of dietary glucose by maintaining ï‰â€6 polyunsaturated fatty acids. Aging Cell, 2020, 19, e13150.	3.0	22
51	Mitochondria-mediated defense mechanisms against pathogens in Caenorhabditis elegans. BMB Reports, 2018, 51, 274-279.	1.1	22
52	Mediator subunit MDT-15/MED15 and Nuclear Receptor HIZR-1/HNF4 cooperate to regulate toxic metal stress responses in Caenorhabditis elegans. PLoS Genetics, 2019, 15, e1008508.	1.5	20
53	Dissection of C. elegans behavioral genetics in 3-D environments. Scientific Reports, 2015, 5, 9564.	1.6	18
54	Reduced insulin/IGF1 signaling prevents immune aging via ZIP-10/bZIP–mediated feedforward loop. Journal of Cell Biology, 2021, 220, .	2.3	18

Seung-Jae Lee

#	Article	IF	CITATIONS
55	Inverse correlation between longevity and developmental rate among wild C. elegans strains. Aging, 2016, 8, 986-994.	1.4	17
56	A PTEN variant uncouples longevity from impaired fitness in Caenorhabditis elegans with reduced insulin/IGF-1 signaling. Nature Communications, 2021, 12, 5631.	5.8	15
57	Genes and Pathways That Influence Longevity in Caenorhabditis elegans. , 2015, , 123-169.		14
58	Regulatory systems that mediate the effects of temperature on the lifespan of <i>Caenorhabditis elegans</i> . Journal of Neurogenetics, 2020, 34, 518-526.	0.6	13
59	Multiplex quantitative analysis of microRNA expression via exponential isothermal amplification and conformation-sensitive DNA separation. Scientific Reports, 2017, 7, 11396.	1.6	12
60	Effect of light and reductones on differentiation of Pleurotus ostreatus. Journal of Microbiology, 2011, 49, 71-77.	1.3	11
61	RNA helicase SACY-1 is required for longevity caused by various genetic perturbations in <i>Caenorhabditis elegans</i> . Cell Cycle, 2016, 15, 1821-1829.	1.3	11
62	MON-2, a Golgi protein, mediates autophagy-dependent longevity in <i>Caenorhabditis elegans</i> . Science Advances, 2021, 7, eabj8156.	4.7	11
63	KINâ€4/MAST kinase promotes PTENâ€mediated longevity of <i>Caenorhabditis elegans</i> via binding through a PDZ domain. Aging Cell, 2019, 18, e12906.	3.0	10
64	Diacetyl odor shortens longevity conferred by food deprivation in <i>C.Âelegans</i> via downregulation of DAFâ€16/FOXO. Aging Cell, 2021, 20, e13300.	3.0	10
65	Longevity regulation by NMD-mediated mRNA quality control. BMB Reports, 2017, 50, 160-161.	1.1	10
66	Recent progresses on anti-aging compounds and their targets in Caenorhabditis elegans. Translational Medicine of Aging, 2019, 3, 121-124.	0.6	9
67	Inhibition of the oligosaccharyl transferase in Caenorhabditis elegans that compromises ER proteostasis suppresses p38-dependent protection against pathogenic bacteria. PLoS Genetics, 2020, 16, e1008617.	1.5	9
68	Transfer RNA-derived fragments in aging Caenorhabditis elegans originate from abundant homologous gene copies. Scientific Reports, 2021, 11, 12304.	1.6	9
69	Caenorhabditis elegans algn-2 Is Critical for Longevity Conferred by Enhanced Nonsense-Mediated mRNA Decay. IScience, 2020, 23, 101713.	1.9	8
70	Longevity Regulation by Insulin/IGF-1 Signalling. Healthy Ageing and Longevity, 2017, , 63-81.	0.2	7
71	Combinatorial Approach Using Caenorhabditis elegans and Mammalian Systems for Aging Research. Molecules and Cells, 2021, 44, 425-432.	1.0	7
72	The role of RNA helicases in aging and lifespan regulation. Translational Medicine of Aging, 2017, 1, 24-31.	0.6	6

Seung-Jae Lee

#	Article	IF	CITATIONS
73	Precise Expression Profiling by Stuffer-Free Multiplex Ligation-Dependent Probe Amplification. Analytical Chemistry, 2013, 85, 9383-9389.	3.2	5
74	MON-2, a Golgi protein, promotes longevity by upregulating autophagy through mediating inter-organelle communications. Autophagy, 2022, 18, 1208-1210.	4.3	5
75	RNAi targeting Caenorhabditis elegans α-arrestins marginally affects lifespan. F1000Research, 2017, 6, 1515.	0.8	2
76	RNAi targeting Caenorhabditis elegans α-arrestins has little effect on lifespan. F1000Research, 2017, 6, 1515.	0.8	2
77	Heat FLiPs a Hormonal Switch for Longevity. Developmental Cell, 2016, 39, 133-134.	3.1	Ο
78	Eyeless Worms Can Run Away from Dangerous Blues. Molecules and Cells, 2021, 44, 623-625.	1.0	0
79	RNAi targeting Caenorhabditis elegans α-arrestins has small or no effects on lifespan. F1000Research, 0, 6, 1515.	0.8	Ο
80	A mutation that alters the 255th glutamate to lysine in RSKS-1/S6 kinase reliably extends the lifespan of. MicroPublication Biology, 2020, 2020, .	0.1	0
81	Age-dependent upregulation of Y RNAs in. MicroPublication Biology, 2021, 2021, .	0.1	Ο
82	Title is missing!. , 2020, 16, e1008617.		0
83	Title is missing!. , 2020, 16, e1008617.		Ο
84	Title is missing!. , 2020, 16, e1008617.		0
85	Title is missing!. , 2020, 16, e1008617.		Ο
86	Title is missing!. , 2020, 16, e1008617.		0
87	Title is missing!. , 2020, 16, e1008617.		0