
Maojie Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5316410/publications.pdf Version: 2024-02-01

Μλομε Ζηλνο

#	Article	IF	CITATIONS
1	Optimized molecular aggregation via incorporating fluorinated unit in the polymer donor for 17.3% efficiency organic solar cells. Chemical Engineering Journal, 2022, 431, 134117.	6.6	11
2	Slotâ€Dieâ€Coated Organic Solar Cells Optimized through Multistep Crystallization Kinetics. Solar Rrl, 2022, 6, .	3.1	7
3	An asymmetric wide-bandgap acceptor simultaneously enabling highly efficient single-junction and tandem organic solar cells. Energy and Environmental Science, 2022, 15, 1585-1593.	15.6	89
4	Siloxane-functional small molecule acceptor for high-performance organic solar cells with 16.6% efficiency. Chemical Engineering Journal, 2022, 442, 136018.	6.6	8
5	15.8% efficiency all-small-molecule solar cells enabled by a combination of side-chain engineering and polymer additive. Journal of Materials Chemistry A, 2022, 10, 10926-10934.	5.2	12
6	Highly efficient ternary solar cells with reduced non-radiative energy loss and enhanced stability <i>via</i> two compatible non-fullerene acceptors. Journal of Materials Chemistry A, 2022, 10, 15605-15613.	5.2	19
7	Modulating the nanoscale morphology on carboxylate-pyrazine containing terpolymer toward 17.8% efficiency organic solar cells with enhanced thermal stability. Chemical Engineering Journal, 2022, 446, 137424.	6.6	14
8	A novel A–DA′D–A bifunctional small molecule for organic solar cell applications with impressive photovoltaic performance. Journal of Materials Chemistry A, 2022, 10, 16497-16505.	5.2	2
9	Fineâ€Tuned Morphology Based on Two Wellâ€Miscible Polymer Donors Enables Higher Openâ€Circuit Voltage and Enhanced Stability for Highly Efficient Ternary Allâ€Polymer Solar Cells. Macromolecular Rapid Communications, 2022, 43, .	2.0	2
10	Revealing aggregation of non-fullerene acceptors in intermixed phase by ultraviolet-visible absorption spectroscopy. Cell Reports Physical Science, 2022, 3, 100983.	2.8	6
11	Optimized Active Layer Morphologies via Ternary Copolymerization of Polymer Donors for 17.6 % Efficiency Organic Solar Cells with Enhanced Fill Factor. Angewandte Chemie, 2021, 133, 2352-2359.	1.6	21
12	Optimized Active Layer Morphologies via Ternary Copolymerization of Polymer Donors for 17.6 % Efficiency Organic Solar Cells with Enhanced Fill Factor. Angewandte Chemie - International Edition, 2021, 60, 2322-2329.	7.2	138
13	Carboxylate substituted pyrazine: A simple and low-cost building block for novel wide bandgap polymer donor enables 15.3% efficiency in organic solar cells. Nano Energy, 2021, 82, 105679.	8.2	48
14	Achieving 16.68% efficiency ternary as-cast organic solar cells. Science China Chemistry, 2021, 64, 581-589.	4.2	99
15	16% efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend. Joule, 2021, 5, 914-930.	11.7	228
16	Manipulating Crystallization Kinetics of Conjugated Polymers in Nonfullerene Photovoltaic Blends toward Refined Morphologies and Higher Performances. Macromolecules, 2021, 54, 4030-4041.	2.2	16
17	Synergistic Effect of Dielectric Property and Energy Transfer on Charge Separation in Nonâ€Fullereneâ€Based Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 15054-15062.	7.2	30
18	Synergistic Effect of Dielectric Property and Energy Transfer on Charge Separation in Nonâ€Fullereneâ€Based Solar Cells. Angewandte Chemie, 2021, 133, 15181-15189.	1.6	2

#	Article	IF	CITATIONS
19	Tuning Aggregation Behavior of Polymer Donor <i>via</i> <scp>Molecularâ€Weight</scp> Control for Achieving 17.1% Efficiency Inverted Polymer Solar Cells. Chinese Journal of Chemistry, 2021, 39, 1941-1947.	2.6	33
20	A unified description of non-radiative voltage losses in organic solar cells. Nature Energy, 2021, 6, 799-806.	19.8	235
21	Modulating Crystallinity and Miscibility via Sideâ€chain Variation Enable High Performance <scp>Allâ€Smallâ€Molecule</scp> Organic Solar Cells. Chinese Journal of Chemistry, 2021, 39, 2147-2153.	2.6	21
22	13.4 % Efficiency from All‧mallâ€Molecule Organic Solar Cells Based on a Crystalline Donor with Chlorine and Trialkylsilyl Substitutions. ChemSusChem, 2021, 14, 3535-3543.	3.6	15
23	A Noncovalently <scp>Fusedâ€Ring</scp> Asymmetric Electron Acceptor Enables Efficient Organic Solar Cells. Chinese Journal of Chemistry, 2021, 39, 2685-2691.	2.6	21
24	Synergistically minimized nonradiative energy loss and optimized morphology achieved via the incorporation of small molecule donor in 17.7% efficiency ternary polymer solar cells. Nano Energy, 2021, 85, 105963.	8.2	47
25	Optimizing the Alkyl Side-Chain Design of a Wide Band-Gap Polymer Donor for Attaining Nonfullerene Organic Solar Cells with High Efficiency Using a Nonhalogenated Solvent. Chemistry of Materials, 2021, 33, 5981-5990.	3.2	15
26	High-performance alloy-like ternary organic solar cells with two compatible non-fullerene acceptors. Organic Electronics, 2021, 95, 106201.	1.4	6
27	Designing efficient A-D-A1-D-A-type non-fullerene acceptors with enhanced fill factor via noncovalently conformational locking. Synthetic Metals, 2021, 278, 116838.	2.1	6
28	A Tandem Organic Photovoltaic Cell with 19.6% Efficiency Enabled by Light Distribution Control. Advanced Materials, 2021, 33, e2102787.	11.1	210
29	Polymerized small-molecule acceptors based on vinylene as π-bridge for efficient all-polymer solar cells. Polymer, 2021, 230, 124104.	1.8	14
30	Ternary organic solar cells with improved efficiency and stability enabled by compatible dual-acceptor strategy. Organic Electronics, 2021, 96, 106227.	1.4	16
31	Highly stable inverted non-fullerene OSCs by surface modification of SnO2 with an easy-accessible material. Chemical Engineering Journal, 2021, 426, 131583.	6.6	8
32	Enhanced short circuit current density and efficiency of ternary organic solar cells by addition of a simple copolymer third component. Chemical Engineering Journal, 2021, 425, 130575.	6.6	17
33	A small molecule acceptor with a heptacyclic benzodi(thienocyclopentafuran) central unit achieving 13.4% efficiency in polymer solar cells with low energy loss. Journal of Materials Chemistry C, 2021, 9, 2744-2751.	2.7	10
34	Recent advances in PM6:Y6-based organic solar cells. Materials Chemistry Frontiers, 2021, 5, 3257-3280.	3.2	138
35	Direct Observation of the Charge Transfer States from a Non-Fullerene Organic Solar Cell with a Small Driving Force. Journal of Physical Chemistry Letters, 2021, 12, 10595-10602.	2.1	12
36	Improving the performance of near infrared binary polymer solar cells by adding a second non-fullerene intermediate band-gap acceptor. Journal of Materials Chemistry C, 2020, 8, 909-915.	2.7	47

#	Article	IF	CITATIONS
37	Efficient Polymer Solar Cells Based on New Random Copolymers with Porphyrinâ€Incorporated Side Chains. Macromolecular Chemistry and Physics, 2020, 221, 1900446.	1.1	2
38	Passivated Metal Oxide n-Type Contacts for Efficient and Stable Organic Solar Cells. ACS Applied Energy Materials, 2020, 3, 1111-1118.	2.5	26
39	Enhanced efficiency in nonfullerene organic solar cells by tuning molecular order and domain characteristics. Nano Energy, 2020, 77, 105310.	8.2	25
40	Efficient all-polymer solar cells based on a narrow-bandgap polymer acceptor. Journal of Materials Chemistry C, 2020, 8, 16180-16187.	2.7	19
41	A Nonâ€Conjugated Polymer Acceptor for Efficient and Thermally Stable Allâ€Polymer Solar Cells. Angewandte Chemie, 2020, 132, 20007-20012.	1.6	16
42	A Nonâ€Conjugated Polymer Acceptor for Efficient and Thermally Stable Allâ€Polymer Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 19835-19840.	7.2	105
43	Random Polymerization Strategy Leads to a Family of Donor Polymers Enabling Wellâ€Controlled Morphology and Multiple Cases of Highâ€Performance Organic Solar Cells. Advanced Materials, 2020, 32, e2003500.	11.1	59
44	Butterfly Effects Arising from Starting Materials in Fused-Ring Electron Acceptors. Journal of the American Chemical Society, 2020, 142, 20124-20133.	6.6	87
45	Influence of Alkyl Substitution Position on Wideâ€Bandgap Polymers in Highâ€Efficiency Nonfullerene Polymer Solar Cells. Macromolecular Rapid Communications, 2020, 41, e2000170.	2.0	5
46	In-situ stabilization strategy for CsPbX3-Silicone resin composite with enhanced luminescence and stability. Nano Energy, 2020, 78, 105150.	8.2	18
47	Novel Bimodal Silver Nanowire Network as Top Electrodes for Reproducible and Highâ€Efficiency Semitransparent Organic Photovoltaics. Solar Rrl, 2020, 4, 2000328.	3.1	36
48	Efficient As ast Polymer Solar Cells with High and Stabilized Fill Factor. Solar Rrl, 2020, 4, 2000275.	3.1	7
49	Color-neutral, semitransparent organic photovoltaics for power window applications. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21147-21154.	3.3	109
50	Random terpolymer based on thiophene-thiazolothiazole unit enabling efficient non-fullerene organic solar cells. Nature Communications, 2020, 11, 4612.	5.8	225
51	Ultrafast Charge Generation Enhancement in Nanoscale Polymer Solar Cells with DIO Additive. Nanomaterials, 2020, 10, 2174.	1.9	5
52	Axisymmetric and Asymmetric Naphthalene-Bisthienothiophene Based Nonfullerene Acceptors: On Constitutional Isomerization and Photovoltaic Performance. ACS Applied Energy Materials, 2020, 3, 5734-5744.	2.5	14
53	A Nonâ€Fullerene Acceptor with Chlorinated Thienyl Conjugated Side Chains for Highâ€Performance Polymer Solar Cells via Toluene Processing. Chinese Journal of Chemistry, 2020, 38, 697-702.	2.6	20
54	A naphthodithiophene-based nonfullerene acceptor for high-performance polymer solar cells with a small energy loss. Journal of Materials Chemistry C, 2020, 8, 6513-6520.	2.7	15

#	Article	IF	CITATIONS
55	A novel wide-bandgap small molecule donor for high efficiency all-small-molecule organic solar cells with small non-radiative energy losses. Energy and Environmental Science, 2020, 13, 1309-1317.	15.6	99
56	Over 15% Efficiency Polymer Solar Cells Enabled by Conformation Tuning of Newly Designed Asymmetric Smallâ€Molecule Acceptors. Advanced Functional Materials, 2020, 30, 2000383.	7.8	55
57	Conformationâ€Tuning Effect of Asymmetric Small Molecule Acceptors on Molecular Packing, Interaction, and Photovoltaic Performance. Small, 2020, 16, e2001942.	5.2	49
58	The role of connectivity in significant bandgap narrowing for fused-pyrene based non-fullerene acceptors toward high-efficiency organic solar cells. Journal of Materials Chemistry A, 2020, 8, 5995-6003.	5.2	11
59	Improving open-circuit voltage by a chlorinated polymer donor endows binary organic solar cells efficiencies over 17%. Science China Chemistry, 2020, 63, 325-330.	4.2	292
60	Asymmetrically noncovalently fused-ring acceptor for high-efficiency organic solar cells with reduced voltage loss and excellent thermal stability. Nano Energy, 2020, 74, 104861.	8.2	75
61	Effects of the Number of Bromine Substitution on Photovoltaic Efficiency and Energy Loss of Benzo[1,2â€b:4,5â€b′]diselenopheneâ€based Narrowâ€Bandgap Multibrominated Nonfullerene Acceptors. So Rrl, 2019, 3, 1800250.	l a .1	46
62	Synthesis and photovoltaic properties of a small molecule acceptor with thienylenevinylene thiophene as l̃€ bridge. Dyes and Pigments, 2019, 160, 227-233.	2.0	10
63	Defect passivation by alcohol-soluble small molecules for efficient p–i–n planar perovskite solar cells with high open-circuit voltage. Journal of Materials Chemistry A, 2019, 7, 21140-21148.	5.2	58
64	Fluorinated Photovoltaic Materials for Highâ€Performance Organic Solar Cells. Chemistry - an Asian Journal, 2019, 14, 3085-3095.	1.7	66
65	A New Smallâ€Molecule Donor Containing Nonâ€Fused Ring Ï€â€Bridge Enables Efficient Organic Solar Cells with High Open Circuit Voltage and Low Acceptor Content. ChemPhysChem, 2019, 20, 2674-2682.	1.0	5
66	A wide bandgap conjugated polymer donor based on alkoxyl-fluorophenyl substituted benzodithiophene for high performance non-fullerene polymer solar cells. Journal of Materials Chemistry A, 2019, 7, 1307-1314.	5.2	24
67	A non-fullerene acceptor based on alkylphenyl substituted benzodithiophene for high efficiency polymer solar cells with a small voltage loss and excellent stability. Journal of Materials Chemistry A, 2019, 7, 24366-24373.	5.2	28
68	Non-fullerene organic solar cells based on a small molecule with benzo[1,2-c:4,5-c']dithiophene-4,8-dione as π-bridge. Organic Electronics, 2019, 67, 175-180.	1.4	9
69	Nonhalogen solvent-processed polymer solar cells based on chlorine and trialkylsilyl substituted conjugated polymers achieve 12.8% efficiency. Journal of Materials Chemistry A, 2019, 7, 2351-2359.	5.2	71
70	A small molecule donor containing a non-fused ring core for all-small-molecule organic solar cells with high efficiency over 11%. Journal of Materials Chemistry A, 2019, 7, 3682-3690.	5.2	39
71	Highly efficient near-infrared and semitransparent polymer solar cells based on an ultra-narrow bandgap nonfullerene acceptor. Journal of Materials Chemistry A, 2019, 7, 3745-3751.	5.2	89
72	Synergistic Effects of Sideâ€Chain Engineering and Fluorination on Small Molecule Acceptors to Simultaneously Broaden Spectral Response and Minimize Voltage Loss for 13.8% Efficiency Organic Solar Cells. Solar Rrl, 2019, 3, 1900169.	3.1	22

#	Article	IF	CITATIONS
73	All-polymer solar cells based on a novel narrow-bandgap polymer acceptor with power conversion efficiency over 10%. Journal of Materials Chemistry A, 2019, 7, 16190-16196.	5.2	103
74	A nonfullerene acceptor with a 1000 nm absorption edge enables ternary organic solar cells with improved optical and morphological properties and efficiencies over 15%. Energy and Environmental Science, 2019, 12, 2529-2536.	15.6	213
75	Overcoming the energy loss in asymmetrical non-fullerene acceptor-based polymer solar cells by halogenation of polymer donors. Journal of Materials Chemistry A, 2019, 7, 15404-15410.	5.2	39
76	Efficient as-cast semi-transparent organic solar cells with efficiency over 9% and a high average visible transmittance of 27.6%. Physical Chemistry Chemical Physics, 2019, 21, 10660-10666.	1.3	29
77	Synergetic Transparent Electrode Architecture for Efficient Non-Fullerene Flexible Organic Solar Cells with >12% Efficiency. ACS Nano, 2019, 13, 4686-4694.	7.3	86
78	Reduced Energy Loss Enabled by a Chlorinated Thiopheneâ€Fused Endingâ€Group Small Molecular Acceptor for Efficient Nonfullerene Organic Solar Cells with 13.6% Efficiency. Advanced Energy Materials, 2019, 9, 1900041.	10.2	144
79	11.2% Efficiency all-polymer solar cells with high open-circuit voltage. Science China Chemistry, 2019, 62, 845-850.	4.2	140
80	Surface modification of ZnO electron transport layers with glycine for efficient inverted non-fullerene polymer solar cells. Organic Electronics, 2019, 70, 25-31.	1.4	41
81	Polymer Side-Chain Variation Induces Microstructural Disparity in Nonfullerene Solar Cells. Chemistry of Materials, 2019, 31, 6568-6577.	3.2	45
82	A blade-coated highly efficient thick active layer for non-fullerene organic solar cells. Journal of Materials Chemistry A, 2019, 7, 22265-22273.	5.2	46
83	A new narrow bandgap polymer as donor material for high performance non-fullerene polymer solar cells. Organic Electronics, 2019, 64, 241-246.	1.4	5
84	Highâ€Performance Nonfullerene Polymer Solar Cells Based on a Wideâ€Bandgap Polymer without Extra Treatment. Macromolecular Rapid Communications, 2019, 40, e1800660.	2.0	5
85	Near-infrared non-fullerene acceptors based on dithienyl[1,2-b:4,5-b']benzodithiophene core for high performance PTB7-Th-based polymer solar cells. Organic Electronics, 2019, 65, 63-69.	1.4	11
86	Synthesis of organic molecule donor for efficient organic solar cells with low acceptor content. Organic Electronics, 2019, 64, 54-61.	1.4	8
87	Chlorine substituted 2D-conjugated polymer for high-performance polymer solar cells with 13.1% efficiency via toluene processing. Nano Energy, 2018, 48, 413-420.	8.2	257
88	Significant enhancement of the photovoltaic performance of organic small molecule acceptors <i>via</i> side-chain engineering. Journal of Materials Chemistry A, 2018, 6, 7988-7996.	5.2	38
89	A narrow-bandgap donor polymer for highly efficient as-cast non-fullerene polymer solar cells with a high open circuit voltage. Organic Electronics, 2018, 58, 82-87.	1.4	22
90	Synthesis and photovoltaic properties of a simple non-fused small molecule acceptor. Organic Electronics, 2018, 58, 133-138.	1.4	30

#	Article	IF	CITATIONS
91	Effect of Fluorination on the Photovoltaic Properties of Medium Bandgap Polymers for Polymer Solar Cells. Chinese Journal of Chemistry, 2018, 36, 502-506.	2.6	4
92	Synergistic effect of fluorination on both donor and acceptor materials for high performance non-fullerene polymer solar cells with 13.5% efficiency. Science China Chemistry, 2018, 61, 531-537.	4.2	342
93	A trifluoromethyl substituted wide bandgap conjugated polymer for non-fullerene polymer solar cells with 10.4% efficiency. Journal of Materials Chemistry A, 2018, 6, 6551-6558.	5.2	22
94	Highâ€Performance As ast Nonfullerene Polymer Solar Cells with Thicker Active Layer and Large Area Exceeding 11% Power Conversion Efficiency. Advanced Materials, 2018, 30, 1704546.	11.1	233
95	Improved photocurrent and efficiency of non-fullerene organic solar cells despite higher charge recombination. Journal of Materials Chemistry A, 2018, 6, 957-962.	5.2	15
96	High-performance organic solar cells based on a small molecule with thieno[3,2-b]thiophene as Ï€-bridge. Organic Electronics, 2018, 53, 273-279.	1.4	30
97	Exceeding 14% Efficiency for Solution-Processed Tandem Organic Solar Cells Combining Fullerene- and Nonfullerene-Based Subcells with Complementary Absorption. ACS Energy Letters, 2018, 3, 2566-2572.	8.8	45
98	Use of two structurally similar small molecular acceptors enabling ternary organic solar cells with high efficiencies and fill factors. Energy and Environmental Science, 2018, 11, 3275-3282.	15.6	261
99	A wide-bandgap polymer based on the alkylphenyl-substituted benzo[1,2- <i>b</i> :4,5- <i>b</i> à€2]dithiophene unit with high power conversion efficiency of over 11%. Journal of Materials Chemistry A, 2018, 6, 16529-16536.	5.2	31
100	Efficient and thermally stable all-polymer solar cells based on a fluorinated wide-bandgap polymer donor with high crystallinity. Journal of Materials Chemistry A, 2018, 6, 16403-16411.	5.2	26
101	Nonfullerene Polymer Solar Cells based on a Perylene Monoimide Acceptor with a High Open ircuit Voltage of 1.3 V. Advanced Functional Materials, 2017, 27, 1603892.	7.8	67
102	A 1,1′-vinylene-fused indacenodithiophene-based low bandgap polymer for efficient polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 5106-5114.	5.2	34
103	A novel wide bandgap conjugated polymer (2.0 eV) based on bithiazole for high efficiency polymer solar cells. Nano Energy, 2017, 34, 556-561.	8.2	40
104	Selenium-Containing Medium Bandgap Copolymer for Bulk Heterojunction Polymer Solar Cells with High Efficiency of 9.8%. Chemistry of Materials, 2017, 29, 4811-4818.	3.2	60
105	Two Wellâ€Miscible Acceptors Work as One for Efficient Fullereneâ€Free Organic Solar Cells. Advanced Materials, 2017, 29, 1700437.	11.1	157
106	Two compatible nonfullerene acceptors with similar structures as alloy for efficient ternary polymer solar cells. Nano Energy, 2017, 38, 510-517.	8.2	149
107	Side-chain engineering for efficient non-fullerene polymer solar cells based on a wide-bandgap polymer donor. Journal of Materials Chemistry A, 2017, 5, 9204-9209.	5.2	76
108	Highâ€Performance Nonâ€Fullerene Polymer Solar Cells Based on Fluorine Substituted Wide Bandgap Copolymers Without Extra Treatments. Solar Rrl, 2017, 1, 1700020.	3.1	107

#	Article	lF	CITATIONS
109	A universal approach to improve electron mobility without significant enlarging phase separation in IDT-based non-fullerene acceptor organic solar cells. Nano Energy, 2017, 41, 609-617.	8.2	49
110	High-performance nonfullerene polymer solar cells based on a fluorinated wide bandgap copolymer with a high open-circuit voltage of 1.04 V. Journal of Materials Chemistry A, 2017, 5, 22180-22185.	5.2	68
111	Origin of Efficient Inverted Nonfullerene Organic Solar Cells: Enhancement of Charge Extraction and Suppression of Bimolecular Recombination Enabled by Augmented Internal Electric Field. Journal of Physical Chemistry Letters, 2017, 8, 5264-5271.	2.1	77
112	Efficient non-fullerene polymer solar cells based on a wide bandgap polymer of meta-alkoxy-phenyl-substituted benzodithiophene and difluorobenzotriazole. Journal of Materials Chemistry A, 2017, 5, 19680-19686.	5.2	28
113	High Efficiency Nonfullerene Polymer Solar Cells with Thick Active Layer and Large Area. Advanced Materials, 2017, 29, 1702291.	11.1	195
114	High-performance nonfullerene polymer solar cells with open-circuit voltage over 1 V and energy loss as low as 0.54 eV. Nano Energy, 2017, 40, 20-26.	8.2	70
115	Diketopyrrolopyrrole-Based Conjugated Polymers with Perylene Bisimide Side Chains for Single-Component Organic Solar Cells. Chemistry of Materials, 2017, 29, 7073-7077.	3.2	93
116	Mapping Polymer Donors toward Highâ€Efficiency Fullerene Free Organic Solar Cells. Advanced Materials, 2017, 29, 1604155.	11.1	360
117	Broad Bandgap D–A Copolymer Based on Bithiazole Acceptor Unit for Application in Highâ€Performance Polymer Solar Cells with Lower Fullerene Content. Macromolecular Rapid Communications, 2016, 37, 1066-1073.	2.0	10
118	Effect of solvent additive on active layer morphologies and photovoltaic performance of polymer solar cells based on PBDTTT-C-T/PC71BM. RSC Advances, 2016, 6, 51924-51931.	1.7	11
119	A wide-bandgap conjugated polymer for highly efficient inverted single and tandem polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 13251-13258.	5.2	58
120	Efficient ternary blend all-polymer solar cells with a polythiophene derivative as a hole-cascade material. Journal of Materials Chemistry A, 2016, 4, 14752-14760.	5.2	91
121	10.8% Efficiency Polymer Solar Cells Based on PTB7â€Th and PC ₇₁ BM via Binary Solvent Additives Treatment. Advanced Functional Materials, 2016, 26, 6635-6640.	7.8	279
122	Efficient polymer solar cells based on a copolymer of meta-alkoxy-phenyl-substituted benzodithiophene and thieno[3,4-b]thiophene. Journal of Materials Chemistry A, 2016, 4, 10135-10141.	5.2	36
123	Ultra-narrow bandgap D-A copolymer based on thienoisoindigo acceptor unit for application in polymer solar cells with energy losses below 0.6 eV. Synthetic Metals, 2016, 220, 134-140.	2.1	8
124	A New Polythiophene Derivative for High Efficiency Polymer Solar Cells with PCE over 9%. Advanced Energy Materials, 2016, 6, 1600430.	10.2	84
125	Synthesis and photovoltaic properties of a 2D-conjugated copolymer based on benzodithiophene with alkylthio-selenophene side chain. RSC Advances, 2016, 6, 14229-14235.	1.7	6
126	Copolymers based on thiazolothiazole-dithienosilole as hole-transporting materials for high efficient perovskite solar cells. Organic Electronics, 2016, 33, 142-149.	1.4	29

#	Article	IF	CITATIONS
127	Toward high open-circuit voltage by smart chain engineering in 2D-conjugated polymer for polymer solar solar cells. Solar Energy Materials and Solar Cells, 2016, 149, 162-169.	3.0	11
128	A Largeâ€Bandgap Conjugated Polymer for Versatile Photovoltaic Applications with High Performance. Advanced Materials, 2015, 27, 4655-4660.	11.1	882
129	Highâ€Performance Organic Solar Cells Based on a Small Molecule with Alkylthioâ€Thienylâ€Conjugated Side Chains without Extra Treatments. Advanced Materials, 2015, 27, 7469-7475.	11.1	186
130	Synthesis and photovoltaic properties of an n-type two-dimension-conjugated polymer based on perylene diimide and benzodithiophene with thiophene conjugated side chains. Journal of Materials Chemistry A, 2015, 3, 18442-18449.	5.2	73
131	Solution-Processable Organic Molecule for High-Performance Organic Solar Cells with Low Acceptor Content. ACS Applied Materials & Interfaces, 2015, 7, 24686-24693.	4.0	26
132	Highly Efficient Tandem Polymer Solar Cells with a Photovoltaic Response in the Visible Light Range. Advanced Materials, 2015, 27, 1189-1194.	11.1	130
133	Enhanced Photovoltaic Performance by Modulating Surface Composition in Bulk Heterojunction Polymer Solar Cells Based on PBDTTTâ€Câ€T/PC ₇₁ BM. Advanced Materials, 2014, 26, 4043-4049.	11.1	203
134	Synergistic Effect of Fluorination on Molecular Energy Level Modulation in Highly Efficient Photovoltaic Polymers. Advanced Materials, 2014, 26, 1118-1123.	11.1	386
135	Influence of the backbone conformation of conjugated polymers on morphology and photovoltaic properties. Polymer Chemistry, 2014, 5, 1976-1981.	1.9	48
136	A Polythiophene Derivative with Superior Properties for Practical Application in Polymer Solar Cells. Advanced Materials, 2014, 26, 5880-5885.	11.1	205
137	Molecular Design toward Highly Efficient Photovoltaic Polymers Based on Two-Dimensional Conjugated Benzodithiophene. Accounts of Chemical Research, 2014, 47, 1595-1603.	7.6	667
138	An Easy and Effective Method to Modulate Molecular Energy Level of the Polymer Based on Benzodithiophene for the Application in Polymer Solar Cells. Advanced Materials, 2014, 26, 2089-2095.	11.1	137
139	Efficient Polymer Solar Cells Based on Poly(3-hexylthiophene) and Indene–C ₆₀ Bisadduct Fabricated with Non-halogenated Solvents. ACS Applied Materials & Interfaces, 2014, 6, 8190-8198.	4.0	86
140	Efficient Polymer Solar Cells Based on Benzothiadiazole and Alkylphenyl Substituted Benzodithiophene with a Power Conversion Efficiency over 8%. Advanced Materials, 2013, 25, 4944-4949.	11.1	306
141	Remove the Residual Additives toward Enhanced Efficiency with Higher Reproducibility in Polymer Solar Cells. Journal of Physical Chemistry C, 2013, 117, 14920-14928.	1.5	210
142	Solution-processed indacenodithiophene-based small molecule for bulk heterojunction solar cells. Journal of Materials Chemistry A, 2013, 1, 14214.	5.2	49
143	Synthesis and photovoltaic properties of a D–A copolymer of dithienosilole and fluorinated-benzotriazole. Polymer Chemistry, 2013, 4, 1467-1473.	1.9	35
144	Benzodifuran-alt-thienothiophene based low band gap copolymers: substituent effects on their molecular energy levels and photovoltaic properties. Polymer Chemistry, 2013, 4, 3047.	1.9	45

#	ARTICLE	IF	CITATIONS
145	PDTâ€Sâ€T: A New Polymer with Optimized Molecular Conformation for Controlled Aggregation and <i>ï€</i> – <i>ï€</i> Stacking and Its Application in Efficient Photovoltaic Devices. Advanced Materials, 2013, 25, 3449-3455.	11.1	190
146	A thieno[3,4-f]isoindole-5,7-dione based copolymer for polymer solar cells. Polymer Chemistry, 2013, 4, 536-541.	1.9	15
147	Influence of D/A Ratio on Photovoltaic Performance of a Highly Efficient Polymer Solar Cell System. Advanced Materials, 2012, 24, 6536-6541.	11.1	229
148	Synthesis and Photovoltaic Properties of a Donorâ€Acceptor Copolymer of Dithienosilole and 5,6â€Bis(octyloxy)benzo[1,2,5]thiadiazole. Macromolecular Chemistry and Physics, 2012, 213, 2529-2535.	1.1	2
149	Effects of π-Conjugated Bridges on Photovoltaic Properties of Donor-π-Acceptor Conjugated Copolymers. Macromolecules, 2012, 45, 1208-1216.	2.2	191
150	Conjugated and Nonconjugated Substitution Effect on Photovoltaic Properties of Benzodifuran-Based Photovoltaic Polymers. Macromolecules, 2012, 45, 6923-6929.	2.2	129
151	Effect of Branched Side Chains on the Physicochemical and Photovoltaic Properties of Poly(3â€hexylthiophene) Isomers. Macromolecular Chemistry and Physics, 2012, 213, 2267-2274.	1.1	12
152	Synthesis of a 4,8-dialkoxy-benzo[1,2-b:4,5-b′]difuran unit and its application in photovoltaic polymer. Chemical Communications, 2012, 48, 3318.	2.2	105
153	Synthesis and photovoltaic properties of D–A copolymers of benzodithiophene and naphtho[2,3-c]thiophene-4,9-dione. Polymer Chemistry, 2012, 3, 99-104.	1.9	29
154	Design, synthesis and photovoltaic properties of a new D–π–A polymer with extended π-bridge units. Journal of Materials Chemistry, 2012, 22, 21024.	6.7	65
155	Poly(thieno[3,2- <i>b</i>]thiophene- <i>alt</i> -bithiazole): A D–A Copolymer Donor Showing Improved Photovoltaic Performance with Indene-C ₆₀ Bisadduct Acceptor. Macromolecules, 2012, 45, 6930-6937.	2.2	71
156	Conjugated Side-Chain Isolated Polythiophene: Synthesis and Photovoltaic Application. Macromolecules, 2012, 45, 113-118.	2.2	53
157	Design, Application, and Morphology Study of a New Photovoltaic Polymer with Strong Aggregation in Solution State. Macromolecules, 2012, 45, 9611-9617.	2.2	664
158	Narrow band gap D–A copolymer of indacenodithiophene and diketopyrrolopyrrole with deep HOMO level: Synthesis and application in fieldâ€effect transistors and polymer solar cells. Journal of Polymer Science Part A, 2012, 50, 371-377.	2.5	35
159	High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C70 bisadduct with solvent additive. Energy and Environmental Science, 2012, 5, 7943.	15.6	400
160	Synthesis and photovoltaic properties of alternative copolymers of benzo[1,2-b:4,5-b′]dithiophene and thiophene. Polymer Bulletin, 2012, 68, 2107-2119.	1.7	2
161	Synthesis and characterizations of poly(4â€alkylthiazole vinylene). Journal of Applied Polymer Science, 2012, 124, 847-854.	1.3	2
162	Photovoltaic Performance Improvement of D–A Copolymers Containing Bithiazole Acceptor Unit by Using Bithiophene Bridges. Macromolecules, 2011, 44, 8798-8804.	2.2	61

#	Article	IF	CITATIONS
163	A furan-bridged D-ï€-A copolymer with deep HOMO level: synthesis and application in polymer solar cells. Polymer Chemistry, 2011, 2, 2872.	1.9	71
164	Downwards tuning the HOMO level of polythiophene by carboxylate substitution for high open-circuit-voltage polymer solar cells. Polymer Chemistry, 2011, 2, 2900.	1.9	61
165	Synthesis and photovoltaic properties of copolymers of carbazole and thiophene with conjugated side chain containing acceptor end groups. Polymer Chemistry, 2011, 2, 1678.	1.9	37
166	Synthesis and Photovoltaic Properties of D–A Copolymers Based on Dithienosilole and Benzotriazole. Macromolecules, 2011, 44, 7632-7638.	2.2	93
167	Alkyl chain engineering on a dithieno[3,2-b:2′,3′-d]silole-alt-dithienylthiazolo[5,4-d]thiazole copolymer toward high performance bulk heterojunction solar cells. Chemical Communications, 2011, 47, 9474.	2.2	94
168	Synthesis and Photovoltaic Properties of D–A Copolymers Based on Alkyl-Substituted Indacenodithiophene Donor Unit. Chemistry of Materials, 2011, 23, 4264-4270.	3.2	193
169	Synthesis and Characterization of Dioctyloxybenzo[1,2- <i>b</i> :4,3- <i>b</i> ′]dithiophene-Containing Copolymers for Polymer Solar Cells. Macromolecules, 2011, 44, 7625-7631.	2.2	63
170	Solution-Processable Star-Shaped Molecules with Triphenylamine Core and Dicyanovinyl Endgroups for Organic Solar Cellsâ€. Chemistry of Materials, 2011, 23, 817-822.	3.2	158
171	Synthesis and photovoltaic properties of copolymers based on bithiophene and bithiazole. Journal of Polymer Science Part A, 2011, 49, 2746-2754.	2.5	20
172	Synthesis and Characterization of a Copolymer Based on Thiazolothiazole and Dithienosilole for Polymer Solar Cells. Advanced Energy Materials, 2011, 1, 557-560.	10.2	110
173	Triphenylamine-containing linear D-A-D molecules with benzothiadiazole as acceptor unit for bulk-heterojunction organic solar cells. Organic Electronics, 2011, 12, 614-622.	1.4	53
174	Effect of Carbon Chain Length in the Substituent of PCBMâ€like Molecules on Their Photovoltaic Properties. Advanced Functional Materials, 2010, 20, 1480-1487.	7.8	137
175	Poly(4,8â€bis(2â€ethylhexyloxy)benzo[1,2â€b:4,5â€bâ€2]dithiophene vinylene): Synthesis, optical and photovolt properties. Journal of Polymer Science Part A, 2010, 48, 1822-1829.	aic 2.5	31
176	Alternating Copolymers of Carbazole and Triphenylamine with Conjugated Side Chain Attaching Acceptor Groups: Synthesis and Photovoltaic Application. Macromolecules, 2010, 43, 9376-9383.	2.2	98
177	Synthesis and Photovoltaic Properties of Bithiazole-Based Donorâ^'Acceptor Copolymers. Macromolecules, 2010, 43, 5706-5712.	2.2	103
178	Synthesis and Photovoltaic Properties of a Copolymer of Benzo[1,2-b:4,5-bâ€2]dithiophene and Bithiazole. Macromolecules, 2010, 43, 8714-8717.	2.2	56
179	New Electron Acceptor with End-Extended Conjugation for High-Performance Polymer Solar Cells. Energy & Fuels, 0, , .	2.5	5