Katarzyna Kurpiewska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5316288/publications.pdf Version: 2024-02-01

KATADZVNA KUDDIEWSKA

#	Article	IF	CITATIONS
1	S _N Ar Isocyanide Diversification. European Journal of Organic Chemistry, 2022, 2022, .	2.4	4
2	Highly Stereoselective Ugi/Pictet–Spengler Sequence. Journal of Organic Chemistry, 2022, 87, 7085-7096.	3.2	13
3	Synthesis of Tunable Fluorescent Imidazole-Fused Heterocycle Dimers. Organic Letters, 2022, 24, 5014-5017.	4.6	9
4	Pseudo-tetrahedral <i>vs</i> . pseudo-octahedral Er ^{III} single molecule magnets and the disruptive role of coordinated TEMPO radical. Inorganic Chemistry Frontiers, 2021, 8, 2817-2828.	6.0	10
5	Distinct sequence and structural feature of trypanosoma malate dehydrogenase. Biochemical and Biophysical Research Communications, 2021, 557, 288-293.	2.1	1
6	Seven quick tips for beginners in protein crystallography. Acta Biochimica Polonica, 2021, 68, 535-546.	0.5	1
7	Insulin conformational changes under high pressure in structural studies and molecular dynamics simulations. Journal of Molecular Structure, 2020, 1202, 127251.	3.6	6
8	â€~Atypical Ugi' tetrazoles. Chemical Communications, 2020, 56, 1799-1802.	4.1	6
9	Diaminoimidazopyrimidines: Access via the Groebke–Blackburn–Bienaymé Reaction and Structural Data Mining. European Journal of Organic Chemistry, 2020, 2020, 5601-5605.	2.4	8
10	Structure-based design approach to rational site-directed mutagenesis of β-lactoglobulin. Journal of Structural Biology, 2020, 210, 107493.	2.8	12
11	Regioselectivity of hyoscyamine 6β-hydroxylase-catalysed hydroxylation as revealed by high-resolution structural information and QM/MM calculations. Dalton Transactions, 2020, 49, 4454-4469.	3.3	15
12	It takes two to tango - The case of thebaine 6-O-demethylase. International Journal of Biological Macromolecules, 2020, 163, 718-729.	7.5	0
13	Copper-Catalyzed Modular Assembly of Polyheterocycles. Journal of Organic Chemistry, 2020, 85, 9915-9927.	3.2	11
14	Scaffolding-Induced Property Modulation of Chemical Space. ACS Combinatorial Science, 2020, 22, 356-360.	3.8	7
15	Towards understanding the effect of high pressure on food protein allergenicity: β-lactoglobulin structural studies. Food Chemistry, 2019, 270, 315-321.	8.2	49
16	Hitting on the move: Targeting intrinsically disordered protein states of the MDM2-p53 interaction. European Journal of Medicinal Chemistry, 2019, 182, 111588.	5.5	9
17	Isocyanideâ€Based Multicomponent Reactions of Free Phenylboronic Acids. European Journal of Organic Chemistry, 2019, 2019, 6132-6137.	2.4	7
18	Glycoconjugates via Phosphorus Ylides. European Journal of Organic Chemistry, 2019, 2019, 3632-3635.	2.4	1

#	Article	IF	CITATIONS
19	Diverse Isoquinoline Scaffolds by Ugi/Pomeranz–Fritsch and Ugi/Schlittler–Müller Reactions. Organic Letters, 2019, 21, 3533-3537.	4.6	18
20	Acoustic Droplet Ejection Enabled Automated Reaction Scouting. ACS Central Science, 2019, 5, 451-457.	11.3	40
21	Sequential Multicomponent Synthesis of 2â€(Imidazo[1,5â€Î±]pyridinâ€1â€yl)â€1,3,4â€Oxadiazoles. European Jo of Organic Chemistry, 2019, 2019, 2029-2034.	ournal 2.4	8
22	Structure and Reactivity of Glycosyl Isocyanides. European Journal of Organic Chemistry, 2019, 2019, 50-55.	2.4	2
23	Synthesis of Highly Substituted Imidazole Uracil Containing Molecules via Ugi-4CR and Passerini-3CR. ACS Combinatorial Science, 2018, 20, 192-196.	3.8	15
24	Crystal structure of thebaine 6-O-demethylase from the morphine biosynthesis pathway. Journal of Structural Biology, 2018, 202, 229-235.	2.8	24
25	Discovery of chromenes as inhibitors of macrophage migration inhibitory factor. Bioorganic and Medicinal Chemistry, 2018, 26, 999-1005.	3.0	8
26	Two-Step Macrocycle Synthesis by Classical Ugi Reaction. Journal of Organic Chemistry, 2018, 83, 1441-1447.	3.2	34
27	Library-to-Library Synthesis of Highly Substituted α-Aminomethyl Tetrazoles via Ugi Reaction. ACS Combinatorial Science, 2018, 20, 70-74.	3.8	15
28	Investigation of high pressure effect on the structure and adsorption of β-lactoglobulin. Colloids and Surfaces B: Biointerfaces, 2018, 161, 387-393.	5.0	28
29	Glutarimide Alkaloids Through Multicomponent Reaction Chemistry. European Journal of Organic Chemistry, 2018, 2018, 6714-6719.	2.4	15
30	Multicomponent Reaction Based Synthesis of 1-Tetrazolylimidazo[1,5- <i>a</i>]pyridines. Organic Letters, 2018, 20, 3871-3874.	4.6	22
31	De Novo Assembly of Highly Substituted Morpholines and Piperazines. Organic Letters, 2017, 19, 642-645.	4.6	35
32	Ammonia-Promoted One-Pot Tetrazolopiperidinone Synthesis by Ugi Reaction. ACS Combinatorial Science, 2017, 19, 343-350.	3.8	17
33	Two Cycles with One Catch: Hydrazine in Ugi 4-CR and Its Postcyclizations. ACS Combinatorial Science, 2017, 19, 193-198.	3.8	19
34	Ugi Multicomponent Reaction Based Synthesis of Medium-Sized Rings. Organic Letters, 2017, 19, 6176-6179.	4.6	16
35	Concise Synthesis of Tetrazole Macrocycle. Organic Letters, 2017, 19, 5078-5081.	4.6	23
36	Two‣tep Synthesis of Complex Artificial Macrocyclic Compounds. Angewandte Chemie, 2017, 129, 10865-10869.	2.0	9

3

Katarzyna Kurpiewska

#	Article	IF	CITATIONS
37	Two‧tep Synthesis of Complex Artificial Macrocyclic Compounds. Angewandte Chemie - International Edition, 2017, 56, 10725-10729.	13.8	37
38	Cysteine Isocyanide in Multicomponent Reaction: Synthesis of Peptido-Mimetic 1,3-Azoles. Journal of Organic Chemistry, 2017, 82, 9585-9594.	3.2	12
39	Diastereoselective one pot five-component reaction toward 4-(tetrazole)-1,3-oxazinanes. RSC Advances, 2017, 7, 49995-49998.	3.6	12
40	Rational design and synthesis of 1,5-disubstituted tetrazoles as potent inhibitors of the MDM2-p53 interaction. European Journal of Medicinal Chemistry, 2017, 126, 384-407.	5.5	30
41	Artificial Macrocycles by Ugi Reaction and Passerini Ring Closure. Journal of Organic Chemistry, 2016, 81, 8789-8795.	3.2	37
42	Cleavable β-Cyanoethyl Isocyanide in the Ugi Tetrazole Reaction. Organic Letters, 2016, 18, 4762-4765.	4.6	19
43	αâ€Amino Acidâ€Isosteric αâ€Amino Tetrazoles. Chemistry - A European Journal, 2016, 22, 3009-3018.	3.3	32
44	Structural investigation of ribonuclease A conformational preferences using high pressure protein crystallography. Chemical Physics, 2016, 468, 53-62.	1.9	7
45	Versatile Protecting-Group Free Tetrazolomethane Amine Synthesis by Ugi Reaction. ACS Combinatorial Science, 2016, 18, 170-175.	3.8	15
46	Hydrazine in the Ugi Tetrazole Reaction. Synthesis, 2016, 48, 1122-1130.	2.3	25
47	Development of multifunctional, heterodimeric isoindoline-1,3-dione derivatives as cholinesterase and β-amyloid aggregation inhibitors with neuroprotective properties. European Journal of Medicinal Chemistry, 2015, 92, 738-749.	5.5	60
48	Versatile Multicomponent Reaction Macrocycle Synthesis Using α-Isocyano-ω-carboxylic Acids. Organic Letters, 2015, 17, 4980-4983.	4.6	55
49	Investigating the effects of double mutation C30A/C75A on onconase structure: Studies at atomic resolution. Biopolymers, 2014, 101, 454-460.	2.4	1
50	Mo(IV) and W(IV) cyanido complexes with Schiff bases. Synthesis, X-ray single crystal structures, physicochemical properties and quantum chemical calculations. Polyhedron, 2014, 68, 112-121.	2.2	3
51	Diverse coordination of Schiff bases based on 2-(aminomethyl)pyridine or 2-acetylpyridine at Mo(IV) centre: Synthesis, crystal structures and physicochemical properties. Polyhedron, 2014, 75, 127-134.	2.2	5
52	A high-throughput method for the quantification of iron saturation in lactoferrin preparations. Analytical and Bioanalytical Chemistry, 2013, 405, 5191-5200.	3.7	56
53	Assemblies of substituted salicylidene-2-ethanolamine copper(II) complexes: From square planar monomeric to octahedral polymeric halogen analogues. Polyhedron, 2013, 49, 74-83.	2.2	28
54	Interaction of apo-transferrin with anticancer ruthenium complexes NAMI-A and its reduced form. Journal of Inorganic Biochemistry, 2012, 116, 11-18.	3.5	46

KATARZYNA KURPIEWSKA

#	Article	IF	CITATIONS
55	Structural and thermodynamic studies of binding saturated fatty acids to bovine β-lactoglobulin. International Journal of Biological Macromolecules, 2012, 50, 1095-1102.	7.5	82
56	High-pressure single-crystal XRD and magnetic study of a octacyanoniobate-based magnetic sponge. CrystEngComm, 2012, 14, 5224.	2.6	23
57	Synthesis, crystal structures and spectroscopy studies of Mo(IV) complexes synthesized in reactions with kojic acid, maltol and ethylmaltol. Polyhedron, 2012, 37, 35-41.	2.2	7
58	Spacer-Dependent Structural and Physicochemical Diversity in Copper(II) Complexes with Salicyloyl Hydrazones: A Monomer and Soluble Polymers. Inorganic Chemistry, 2011, 50, 3501-3510.	4.0	23
59	Two modes of fatty acid binding to bovine Î²â€łactoglobulin—crystallographic and spectroscopic studies. Journal of Molecular Recognition, 2011, 24, 341-349.	2.1	96
60	High pressure macromolecular crystallography for structural biology: a review. Open Life Sciences, 2010, 5, 531-542.	1.4	6
61	Xâ€ray crystallographic studies of RNase A variants engineered at the most destabilizing positions of the main hydrophobic core: Further insight into protein stability. Proteins: Structure, Function and Bioinformatics, 2009, 77, 658,669	2.6	7