Hui Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5316277/publications.pdf

Version: 2024-02-01

87843 79644 5,740 111 38 73 citations h-index g-index papers 114 114 114 5237 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Organic and Polymeric Semiconductors Enhanced by Noncovalent Conformational Locks. Chemical Reviews, 2017, 117, 10291-10318.	23.0	575
2	Design, Synthesis, and Characterization of Ladder-Type Molecules and Polymers. Air-Stable, Solution-Processable <i>n</i> -Channel and Ambipolar Semiconductors for Thin-Film Transistors via Experiment and Theory. Journal of the American Chemical Society, 2009, 131, 5586-5608.	6.6	481
3	Binary Organic Solar Cells Breaking 19% via Manipulating the Vertical Component Distribution. Advanced Materials, 2022, 34, .	11.1	384
4	Morphologyâ€Performance Relationships in Highâ€Efficiency Allâ€Polymer Solar Cells. Advanced Energy Materials, 2014, 4, 1300785.	10.2	227
5	Combining Electron-Neutral Building Blocks with Intramolecular "Conformational Locks―Affords Stable, High-Mobility P- and N-Channel Polymer Semiconductors. Journal of the American Chemical Society, 2012, 134, 10966-10973.	6.6	220
6	Halogenated conjugated molecules for ambipolar field-effect transistors and non-fullerene organic solar cells. Materials Chemistry Frontiers, 2017, 1, 1389-1395.	3.2	173
7	Achieving Highâ€Performance Ternary Organic Solar Cells through Tuning Acceptor Alloy. Advanced Materials, 2017, 29, 1603154.	11.1	171
8	Highâ€Performance Noncovalently Fusedâ€Ring Electron Acceptors for Organic Solar Cells Enabled by Noncovalent Intramolecular Interactions and Endâ€Group Engineering. Angewandte Chemie - International Edition, 2021, 60, 12475-12481.	7.2	155
9	Triplet Telluropheneâ€Based Acceptors for Organic Solar Cells. Angewandte Chemie - International Edition, 2018, 57, 1096-1102.	7.2	125
10	Achieving Efficient NIRâ€II Typeâ€I Photosensitizers for Photodynamic/Photothermal Therapy upon Regulating Chalcogen Elements. Advanced Materials, 2022, 34, e2108146.	11.1	116
11	An A-D-A′-D-A type unfused nonfullerene acceptor for organic solar cells with approaching 14% efficiency. Science China Chemistry, 2021, 64, 228-231.	4.2	115
12	Sideâ€Chain Engineering for Enhancing the Molecular Rigidity and Photovoltaic Performance of Noncovalently Fusedâ€Ring Electron Acceptors. Angewandte Chemie - International Edition, 2021, 60, 17720-17725.	7.2	113
13	Recent advances in organic ternary solar cells. Journal of Materials Chemistry A, 2017, 5, 11501-11517.	5.2	106
14	Tuning V _{oc} for high performance organic ternary solar cells with non-fullerene acceptor alloys. Journal of Materials Chemistry A, 2017, 5, 19697-19702.	5.2	94
15	Highâ€Performance Allâ€Polymer Photoresponse Devices Based on Acceptor–Acceptor Conjugated Polymers. Advanced Functional Materials, 2016, 26, 6306-6315.	7.8	88
16	Significant enhancement of photovoltaic performance through introducing Sâ< N conformational locks. Journal of Materials Chemistry A, 2017, 5, 21674-21678.	5.2	87
17	Influence of Thiol Selfâ€Assembled Monolayer Processing on Bottomâ€Contact Thinâ€Film Transistors Based on nâ€Type Organic Semiconductors. Advanced Functional Materials, 2012, 22, 1856-1869.	7.8	84
18	Noncovalent Se···O Conformational Locks for Constructing Highâ€Performing Optoelectronic Conjugated Polymers. Advanced Materials, 2017, 29, 1606025.	11.1	84

#	Article	IF	CITATIONS
19	Simple Nonfusedâ€Ring Electron Acceptors with Noncovalently Conformational Locks for Low ost and Highâ€Performance Organic Solar Cells Enabled by Endâ€Group Engineering. Advanced Functional Materials, 2022, 32, 2108861.	7.8	84
20	Alkoxyâ€Functionalized Thienylâ€Vinylene Polymers for Fieldâ€Effect Transistors and Allâ€Polymer Solar Cells. Advanced Functional Materials, 2014, 24, 2782-2793.	7.8	83
21	Versatile α,ï‰â€Disubstituted Tetrathienoacene Semiconductors for High Performance Organic Thinâ€Film Transistors. Advanced Functional Materials, 2012, 22, 48-60.	7.8	82
22	Crystallization Kinetics Modulation of FASnI ₃ Films with Preâ€nucleation Clusters for Efficient Leadâ€Free Perovskite Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 3693-3698.	7.2	80
23	MoS ₂ Quantum Dots with a Tunable Work Function for High-Performance Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2016, 8, 26916-26923.	4.0	77
24	Triplet Acceptors with a Dâ€A Structure and Twisted Conformation for Efficient Organic Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 15043-15049.	7.2	77
25	A universal method for constructing high efficiency organic solar cells with stacked structures. Energy and Environmental Science, 2021, 14, 2314-2321.	15.6	75
26	Selfâ€Powered Organic Photodetectors with High Detectivity for Near Infrared Light Detection Enabled by Dark Current Reduction. Advanced Functional Materials, 2021, 31, 2106326.	7.8	70
27	Significant Enhancement of Photothermal and Photoacoustic Efficiencies for Semiconducting Polymer Nanoparticles through Simply Molecular Engineering. Advanced Functional Materials, 2018, 28, 1800135.	7.8	68
28	Noncovalent conformational locks in organic semiconductors. Science China Chemistry, 2018, 61, 1359-1367.	4.2	60
29	Hydrolytic cleavage of both CS2 carbon–sulfur bonds by multinuclear Pd(II) complexes at room temperature. Nature Chemistry, 2017, 9, 188-193.	6.6	57
30	Toward Achieving Single-Molecule White Electroluminescence from Dual Emission of Fluorescence and Phosphorescence. Chemistry of Materials, 2020, 32, 4038-4044.	3.2	57
31	Achieving Highâ€Performance Photothermal and Photodynamic Effects upon Combining D–A Structure and Nonplanar Conformation. Small, 2020, 16, e2000909.	5.2	56
32	Simultaneous Enhancement of Three Parameters of P3HTâ€Based Organic Solar Cells with One Oxygen Atom. Advanced Energy Materials, 2019, 9, 1803012.	10.2	54
33	Anthracenedicarboximide-based semiconductors for air-stable, n-channel organic thin-film transistors: materials design, synthesis, and structural characterization. Journal of Materials Chemistry, 2012, 22, 4459-4472.	6.7	51
34	Precisely Tuning Photothermal and Photodynamic Effects of Polymeric Nanoparticles by Controlled Copolymerization. Angewandte Chemie - International Edition, 2020, 59, 12756-12761.	7.2	50
35	PEDOT:PSSâ€Assisted Exfoliation and Functionalization of 2D Nanosheets for Highâ€Performance Organic Solar Cells. Advanced Functional Materials, 2017, 27, 1701622.	7.8	46
36	High Performing Ternary Solar Cells through FÃ \P rster Resonance Energy Transfer between Nonfullerene Acceptors. ACS Applied Materials & Samp; Interfaces, 2017, 9, 26928-26936.	4.0	44

#	Article	IF	Citations
37	Tellurophene-based metal-organic framework nanosheets for high-performance organic solar cells. Journal of Power Sources, 2018, 401, 13-19.	4.0	44
38	Flexible Short-Wave Infrared Image Sensors Enabled by High-Performance Polymeric Photodetectors. Macromolecules, 2020, 53, 10636-10643.	2.2	42
39	Wide bandgap small molecular acceptors for low energy loss organic solar cells. Journal of Materials Chemistry C, 2017, 5, 12591-12596.	2.7	39
40	Aromatic imide/amide-based organic small-molecule emitters for organic light-emitting diodes. Materials Chemistry Frontiers, 2020, 4, 1554-1568.	3.2	39
41	Very Large Silacylic Substituent Effects on Response in Silole-Based Polymer Transistors. Chemistry of Materials, 2011, 23, 2185-2200.	3.2	38
42	Achieving high performance non-fullerene organic solar cells through tuning the numbers of electron deficient building blocks of molecular acceptors. Journal of Power Sources, 2016, 324, 538-546.	4.0	38
43	Uncommon Aggregationâ€Induced Emission Molecular Materials with Highly Planar Conformations. Advanced Optical Materials, 2018, 6, 1701394.	3.6	37
44	Tellurophene-Based N-type Copolymers for Photovoltaic Applications. ACS Applied Materials & Samp; Interfaces, 2016, 8, 34620-34629.	4.0	35
45	A Highly Planar Nonfullerene Acceptor with Multiple Noncovalent Conformational Locks for Efficient Organic Solar Cells. Small Methods, 2018, 2, 1700330.	4.6	35
46	Fused Thiophene Semiconductors: Crystal Structure–Film Microstructure Transistor Performance Correlations. Advanced Functional Materials, 2013, 23, 3850-3865.	7.8	34
47	Highâ€Performance Allâ€Smallâ€Molecule Organic Solar Cells Enabled by Regioâ€Isomerization of Noncovalently Conformational Locks. Advanced Functional Materials, 2022, 32, .	7.8	34
48	Iris-Like Acceptor with Most PDI Units for Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2018, 10, 28812-28818.	4.0	32
49	Highâ€Performance Noncovalently Fusedâ€Ring Electron Acceptors for Organic Solar Cells Enabled by Noncovalent Intramolecular Interactions and Endâ€Group Engineering. Angewandte Chemie, 2021, 133, 12583-12589.	1.6	31
50	Perylene Diimideâ€Based Conjugated Polymers for Allâ€Polymer Solar Cells. Chemistry - A European Journal, 2020, 26, 12510-12522.	1.7	29
51	Significant enhancement of responsivity of organic photodetectors upon molecular engineering. Journal of Materials Chemistry C, 2019, 7, 5739-5747.	2.7	28
52	Acceptor–acceptor-type conjugated polymer semiconductors. Journal of Energy Chemistry, 2021, 59, 364-387.	7.1	28
53	Triplet Tellurophene-Based Semiconducting Polymer Nanoparticles for Near-Infrared-Mediated Cancer Theranostics. ACS Applied Materials & Samp; Interfaces, 2019, 11, 17884-17893.	4.0	27
54	Triplet Telluropheneâ€Based Acceptors for Organic Solar Cells. Angewandte Chemie, 2018, 130, 1108-1114.	1.6	26

#	Article	IF	CITATIONS
55	Benzotriazole-Based p-Type Polymers with Thieno[3,2- <i>b</i>) Ithiophene ¨I€-Bridges and Fluorine Substituents To Realize High <i>V</i> _{OC} . ACS Applied Polymer Materials, 2019, 1, 906-913.	2.0	26
56	Combination of noncovalent conformational locks and side chain engineering to tune the crystallinity of nonfullerene acceptors for high-performance P3HT based organic solar cells. Materials Chemistry Frontiers, 2019, 3, 64-69.	3.2	24
57	Tellurophene-Based Random Copolymers for High Responsivity and Detectivity Photodetectors. ACS Applied Materials & Samp; Interfaces, 2018, 10, 1917-1924.	4.0	23
58	Low-cost polymer acceptors with noncovalently fused-ring backbones for efficient all-polymer solar cells. Science China Chemistry, 2022, 65, 926-933.	4.2	22
59	Enhancing Photovoltaic Performances of Naphthaleneâ€Based Unfusedâ€Ring Electron Acceptors upon Regioisomerization. Solar Rrl, 2021, 5, 2100094.	3.1	21
60	Efficient room temperature catalytic synthesis of alternating conjugated copolymers via C-S bond activation. Nature Communications, 2022, 13, 144.	5.8	21
61	Fine-tuning solid state packing and significantly improving photovoltaic performance of conjugated polymers through side chain engineering via random polymerization. Journal of Materials Chemistry A, 2017, 5, 5585-5593.	5.2	20
62	Crystallization Kinetics Modulation of FASnl ₃ Films with Preâ€nucleation Clusters for Efficient Leadâ€Free Perovskite Solar Cells. Angewandte Chemie, 2021, 133, 3737-3742.	1.6	20
63	Self-powered flexible artificial synapse for near-infrared light detection. Cell Reports Physical Science, 2021, 2, 100507.	2.8	19
64	Ternary blend polymer solar cells with two non-fullerene acceptors as acceptor alloy. Dyes and Pigments, 2017, 141, 388-393.	2.0	17
65	Significantly improving the efficiency of polymer solar cells through incorporating noncovalent conformational locks. Materials Chemistry Frontiers, 2017, 1, 1317-1323.	3.2	17
66	The Synthesis and Optoelectronic Applications for Telluropheneâ€Based Small Molecules and Polymers. ChemPhysChem, 2019, 20, 2600-2607.	1.0	17
67	Ultra-stable tellurium-doped carbon quantum dots for cell protection and near-infrared photodynamic application. Science Bulletin, 2020, 65, 1580-1586.	4.3	17
68	Ti ₃ C ₂ T <i>>_x</i> MXeneâ€RAN van der Waals Heterostructureâ€Based Flexible Transparent NIR Photodetector Array for 1024 Pixel Image Sensing Application. Advanced Materials Technologies, 2022, 7, .	3.0	17
69	Defectâ€Free Alternating Conjugated Polymers Enabled by Room―Temperature Stille Polymerization. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
70	Synthetic Routes for Heteroatomâ€Containing Alkylated/Arylated Polycyclic Aromatic Hydrocarbons. Angewandte Chemie - International Edition, 2021, 60, 2924-2928.	7.2	14
71	Converting Thioether Waste into Organic Semiconductors by Carbon–Sulfur Bond Activation. Angewandte Chemie - International Edition, 2019, 58, 5044-5048.	7.2	12
72	Mutual Inductance Between Arbitrary Conductor and Rogowski Coil With Circular Skeleton and Gap Compensation. IEEE Sensors Journal, 2019, 19, 4106-4114.	2.4	12

#	Article	IF	CITATIONS
73	Enhancing the Photovoltaic Performance of Triplet Acceptors Enabled by Sideâ€Chain Engineering. Solar Rrl, 2021, 5, 2100522.	3.1	12
74	Quasi-Steady-State Rotor EMF-Oriented Vector Control of Doubly Fed Winding Induction Generators for Wind-Energy Generation. Electric Power Components and Systems, 2006, 34, 1201-1211.	1.0	11
75	Triplet Acceptors with a Dâ€A Structure and Twisted Conformation for Efficient Organic Solar Cells. Angewandte Chemie, 2020, 132, 15153-15159.	1.6	11
76	Sâc Cl intramolecular interaction: An efficient strategy to improve power conversion efficiency of organic solar cells. Dyes and Pigments, 2020, 179, 108416.	2.0	11
77	Thermoelectric Properties of Nanoâ€grained Mooihoekite Cu ₉ Fe ₉ S ₁₆ . Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1116-1121.	0.6	11
78	Air Stable Chalcogen-Doped Rubicenes with Diradical Character. CCS Chemistry, 2022, 4, 3669-3676.	4.6	11
79	Positively and negatively large Goos–HÃ ¤ chen lateral displacements from a symmetric gyrotropic slab. Applied Physics A: Materials Science and Processing, 2009, 94, 917-922.	1.1	10
80	Sulfur vs. tellurium: the heteroatom effects on the nonfullerene acceptors. Science China Chemistry, 2019, 62, 897-903.	4.2	10
81	Sideâ€Chain Engineering for Enhancing the Molecular Rigidity and Photovoltaic Performance of Noncovalently Fusedâ€Ring Electron Acceptors. Angewandte Chemie, 2021, 133, 17861-17866.	1.6	10
82	AMPK mediates the neurotoxicity of iron oxide nanoparticles retained in mitochondria or lysosomes. Metallomics, 2019, 11, 1200-1206.	1.0	9
83	Doping a D-A structural polymer based on benzodithiophene and triazoloquinoxaline for efficiency improvement of ternary solar cells. Electronic Materials Letters, 2015, 11, 236-240.	1.0	8
84	Modeling and Analyzing the Mutual Inductance of Rogowski Coils of Arbitrary Skeleton. Sensors, 2019, 19, 3397.	2.1	8
85	Thiophene: An eco-friendly solvent for organic solar cells. Dyes and Pigments, 2019, 168, 36-41.	2.0	8
86	Optoelectronic properties and aggregation effects on the performance of planar versus contorted pyrene-cored perylenediimide dimers for organic solar cells. Dyes and Pigments, 2020, 173, 107976.	2.0	8
87	Effect of Frequency on the Linearity of Double-Layer and Single-Layer Rogowski Coils. IEEE Sensors Journal, 2020, 20, 9910-9918.	2.4	8
88	Ultrathin Anode Buffer Layer for Enhancing Performance of Polymer Solar Cells. International Journal of Photoenergy, 2014, 2014, 1-6.	1.4	7
89	The effect of DIO additive on performance improvement of polymer solar cells. Science Bulletin, 2014, 59, 3227-3231.	1.7	7
90	Precisely Tuning Photothermal and Photodynamic Effects of Polymeric Nanoparticles by Controlled Copolymerization. Angewandte Chemie, 2020, 132, 12856-12861.	1.6	7

#	Article	IF	CITATIONS
91	A Method for Increasing the Bandwidth of Rogowski Coils Without Changing Their Size. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-10.	2.4	7
92	Synthetic Routes for Heteroatom ontaining Alkylated/Arylated Polycyclic Aromatic Hydrocarbons. Angewandte Chemie, 2021, 133, 2960-2964.	1.6	6
93	Efficiency Enhancement in Polymer Solar Cells With a Polar Small Molecule Both at Interface and in the Bulk Heterojunction Layer. IEEE Journal of Photovoltaics, 2015, 5, 1408-1413.	1.5	5
94	One-Pot Catalytic Cleavage of Câ•6 Double Bonds by Pd Catalysts at Room Temperature. Inorganic Chemistry, 2018, 57, 9266-9273.	1.9	5
95	A New Noncovalently Fusedâ€Ring Electron Acceptor Based on 3,7â€Dialkyloxybenzo[1,2â€ <i>b</i> !i>:4,5â€ <i>b'</i>]dithiophene for Lowâ€Cost and Highâ€Performance Organic Solar Cells. Macromolecular Rapid Communications, 2022, 43, e2200085.	2.0	5
96	Goos-Hächen Lateral Displacements at the Interface between Isotropic and Gyroelectric Media. International Journal of Antennas and Propagation, 2013, 2013, 1-6.	0.7	4
97	The influence of numbers of subunits on the photovoltaic performance of non-fullerene acceptors. Synthetic Metals, 2017, 231, 19-24.	2.1	4
98	Microwave-Assisted Classic Ullmann C–C Coupling Polymerization for Acceptor-Acceptor Homopolymers. Polymers, 2019, 11, 1741.	2.0	3
99	Performance of Preconditioned Nonstationary Methods for Electromagnetic Scattering From One Dimensional Dielectric Rough Surfaces. IEEE Transactions on Antennas and Propagation, 2014, 62, 5362-5365.	3.1	1
100	Improved efficiency of ternary the blend polymer solar cells by doping a narrow band gap polymer material. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-5.	2.0	1
101	A Wave Splitter with Simple Structure Based on Biaxial Anisotropic Medium. International Journal of Antennas and Propagation, 2017, 2017, 1-7.	0.7	1
102	Converting Thioether Waste into Organic Semiconductors by Carbon–Sulfur Bond Activation. Angewandte Chemie, 2019, 131, 5098-5102.	1.6	1
103	Simply tuning the electron deficient units to achieve P and N-type conjugated polymers for organic solar cells. Dyes and Pigments, 2019, 162, 728-733.	2.0	1
104	Lowâ€frequency performance of openable flexible doubleâ€loop Rogowski coil. IET Science, Measurement and Technology, 2021, 15, 578-587.	0.9	1
105	Design and Optimization Methods of the Header of HDI PCB Rogowski Current Sensors. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-10.	2.4	1
106	The Aryl Sulfide Synthesis via Sulfide Transfer. Chemistry - A European Journal, 2022, , e202200869.	1.7	1
107	Frontispiece: Perylene Diimideâ€Based Conjugated Polymers for Allâ€Polymer Solar Cells. Chemistry - A European Journal, 2020, 26, .	1.7	O
108	Tobin Marks' 75th birthday. A celebration of a career devoted to materials chemistry. Journal of Materials Chemistry C, 2020, 8, 14979-14982.	2.7	O

Hui Huang

#	Article	IF	CITATIONS
109	Defectâ€Free Alternating Conjugated Polymers Enabled by Roomâ€Temperature Stille Polymerization. Angewandte Chemie, 0, , .	1.6	O
110	Clean synthetic approaches toward small-molecule organic electronics., 2022,, 95-143.		0
111	Rù⁄4cktitelbild: Defectâ€Free Alternating Conjugated Polymers Enabled by Room―Temperature Stille Polymerization (Angew. Chem. 16/2022). Angewandte Chemie, 2022, 134, .	1.6	O