Jeremy B A Green

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5316269/publications.pdf

Version: 2024-02-01

61 papers 4,380 citations

236833 25 h-index 59 g-index

68 all docs 68 docs citations

68 times ranked 3704 citing authors

#	Article	IF	CITATIONS
1	Mutations in Hcfc1 and Ronin result in an inborn error of cobalamin metabolism and ribosomopathy. Nature Communications, 2022, 13, 134.	5.8	16
2	Methods of Palate Culture in Later Palatogenesis: Elevation, Horizontal Outgrowth, and Fusion. Methods in Molecular Biology, 2022, 2403, 63-80.	0.4	0
3	A landmark-free morphometrics pipeline for high-resolution phenotyping: application to a mouse model of Down syndrome. Development (Cambridge), 2021, 148, .	1.2	26
4	Early perturbation of Wnt signaling reveals patterning and invagination-evagination control points in molar tooth development. Development (Cambridge), 2021, 148, .	1.2	12
5	Computational biology: Turing's lessons in simplicity. Biophysical Journal, 2021, 120, 4139-4141.	0.2	5
6	Perturbation analysis of a multi-morphogen turing reaction-diffusion stripe patterning system reveals key regulatory interactions. Development (Cambridge), 2020, 147, .	1.2	11
7	Balance Between Tooth Size and Tooth Number Is Controlled by Hyaluronan. Frontiers in Physiology, 2020, 11, 996.	1.3	8
8	Epithelial invagination by a vertical telescoping cell movement in mammalian salivary glands and teeth. Nature Communications, 2020, 11, 2366.	5. 8	15
9	Molar Bud-to-Cap Transition Is Proliferation Independent. Journal of Dental Research, 2019, 98, 1253-1261.	2.5	21
10	Systems morphodynamics: understanding the development of tissue hardware. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160505.	1.8	5
11	From snapshots to movies: Understanding early tooth development in four dimensions. Developmental Dynamics, 2017, 246, 442-450.	0.8	16
12	Cellular systems for epithelial invagination. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20150526.	1.8	81
13	Invagination of Ectodermal Placodes Is Driven by Cell Intercalation-Mediated Contraction of the Suprabasal Tissue Canopy. PLoS Biology, 2016, 14, e1002405.	2.6	47
14	Epiboly generates the epidermal basal monolayer and spreads the nascent mammalian skin to enclose the embryonic body. Journal of Cell Science, 2016, 129, 1915-27.	1,2	13
15	Mapping cellular processes in the mesenchyme during palatal development in the absence of Tbx1 reveals complex proliferation changes and perturbed cell packing and polarity. Journal of Anatomy, 2016, 228, 464-473.	0.9	12
16	Epithelial stratification and placode invagination are separable functions in early morphogenesis of the molar tooth. Development (Cambridge), 2016, 143, 670-81.	1.2	48
17	Epiboly generates the epidermal basal monolayer and spreads the nascent mammalian skin to enclose the embryonic body. Development (Cambridge), 2016, 143, e1.2-e1.2.	1.2	0
18	Positional information and reaction-diffusion: two big ideas in developmental biology combine. Development (Cambridge), 2015, 142, 1203-1211.	1.2	317

#	Article	IF	CITATIONS
19	Spindle orientation processes in epithelial growth and organisation. Seminars in Cell and Developmental Biology, 2014, 34, 124-132.	2.3	11
20	Modelling from the experimental developmental biologists viewpoint. Seminars in Cell and Developmental Biology, 2014, 35, 58-65.	2.3	19
21	Thick and thin fingers point out Turing waves. Genome Biology, 2013, 14, 101.	13.9	7
22	The distribution of Dishevelled in convergently extending mesoderm. Developmental Biology, 2013, 382, 496-503.	0.9	10
23	Whole population cell analysis of a landmark-rich mammalian epithelium reveals multiple elongation mechanisms. Development (Cambridge), 2013, 140, 4740-4750.	1.2	38
24	Hedgehog Signalling in Development of the Secondary Palate. Frontiers of Oral Biology, 2012, 16, 52-59.	1.5	28
25	Periodic stripe formation by a Turing mechanism operating at growth zones in the mammalian palate. Nature Genetics, 2012, 44, 348-351.	9.4	214
26	European stem-cell ruling is misleading. Nature, 2011, 479, 41-41.	13.7	2
27	PAR-1 promotes primary neurogenesis and asymmetric cell divisions via control of spindle orientation. Development (Cambridge), 2010, 137, 2501-2505.	1.2	21
28	PAR-1 promotes primary neurogenesis and asymmetric cell divisions via control of spindle orientation. Journal of Cell Science, 2010, 123, e1-e1.	1.2	0
29	Sophistications of cell sorting. Nature Cell Biology, 2008, 10, 375-377.	4.6	25
30	BMP and Wnt Specify Hematopoietic Fate by Activation of the Cdx-Hox Pathway. Cell Stem Cell, 2008, 2, 72-82.	5.2	192
31	Limiting the Impact of the Impact Factor. Science, 2008, 322, 1463-1463.	6.0	5
32	PAR1 specifies ciliated cells in vertebrate ectoderm downstream of aPKC. Development (Cambridge), 2007, 134, 4297-4306.	1.2	43
33	Convergent extension and the hexahedral cell. Nature Cell Biology, 2007, 9, 1010-1015.	4.6	27
34	Association of valproateâ€induced teratogenesis with histone deacetylase inhibition in vivo. FASEB Journal, 2005, 19, 1166-1168.	0.2	162
35	Distinct PAR-1 Proteins Function in Different Branches of Wnt Signaling during Vertebrate Development. Developmental Cell, 2005, 8, 829-841.	3.1	106
36	Lkb1 and GSK3b: Kinases at the Center (and the poles) of the Action. Cell Cycle, 2004, 3, 11-13.	1.3	15

#	Article	IF	Citations
37	Embryos, Words, and Numbers: The Ethical Treatment of Opinion. American Journal of Bioethics, 2004, 4, 7-9.	0.5	5
38	Self-organization of vertebrate mesoderm based on simple boundary conditions. Developmental Dynamics, 2004, 231, 576-581.	0.8	33
39	Lkb1 and GSK3-beta: kinases at the center and poles of the action. Cell Cycle, 2004, 3, 12-4.	1.3	9
40	LKB1 (XEEK1) regulates Wnt signalling in vertebrate development. Nature Cell Biology, 2003, 5, 889-894.	4.6	125
41	Molecular cloning and developmental expression of Par-1/MARK homologues XPar-1A and XPar-1B from Xenopus laevis. Mechanisms of Development, 2002, 119, S143-S148.	1.7	13
42	Morphogen gradients, positional information, and Xenopus: Interplay of theory and experiment. Developmental Dynamics, 2002, 225, 392-408.	0.8	94
43	Missing Links in GSK3 Regulation. Developmental Biology, 2001, 235, 303-313.	0.9	57
44	Functional communication between endogenous BRCA1 and its partner, BARD1, during Xenopus laevis development. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 12078-12083.	3.3	144
45	Evidence for dual mechanisms of mesoderm establishment inXenopus embryos. Developmental Dynamics, 2000, 219, 77-83.	0.8	13
46	Anteroposterior neural tissue specification by activin-induced mesoderm. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 8596-8601.	3.3	18
47	Differential effects on Xenopus development of interference with type IIA and type IIB activin receptors. Mechanisms of Development, 1997, 61, 175-186.	1.7	26
48	Tales of tails: Brachyury and the T-box genes. Biochimica Et Biophysica Acta: Reviews on Cancer, 1997, 1333, F73-F84.	3.3	23
49	Borrowing thy neighbour's genetics: Neural induction and aBrachyury mutant inXenopus. BioEssays, 1994, 16, 539-540.	1.2	2
50	Roads to neuralness: Embryonic neural induction as derepression of a default state. Cell, 1994, 77, 317-320.	13.5	36
51	What the papers say: Mesodermal growth factor candidates elected!. BioEssays, 1993, 15, 129-130.	1.2	2
52	Intercellular signalling in mesoderm formation during amphibian development. Philosophical Transactions of the Royal Society B: Biological Sciences, 1993, 340, 287-296.	1.8	11
53	Responses of embryonic xenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm. Cell, 1992, 71, 731-739.	13.5	487
54	The Role of Thresholds and Mesoderm Inducing Factors in Axis Patterning in Xenopus. , 1992, , 241-249.		1

#	ARTICLE	IF	CITATIONS
55	Expression of a xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell, 1991, 67, 79-87.	13.5	944
56	Growth factors as morphogens: do gradients and thresholds establish body plan?. Trends in Genetics, 1991, 7, 245-250.	2.9	76
57	Graded changes in dose of a Xenopus activin A homologue elicit stepwise transitions in embryonic cell fate. Nature, 1990, 347, 391-394.	13.7	510
58	What The Papers Say: Retinoic acid: The morphogen of the main body axis?. BioEssays, 1990, 12, 437-439.	1.2	17
59	A deletion of the PDC1 gene for pyruvate decarboxylase of yeast causes a different phenotype than previously isolated point mutations. Current Genetics, 1989, 15, 75-81.	0.8	68
60	Pyruvate decarboxylase is like acetolactate synthase (ILV2) and not like the pyruvate dehydrogenase E1 subunit. FEBS Letters, 1989, 246, 1-5.	1.3	42
61	The structure and regulation of phosphoglucose isomerase in Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1988, 215, 100-106.	2.4	42