
Enrica Strettoi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5315951/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural abnormalities of retinal pigment epithelial cells in a lightâ€inducible, rhodopsin mutant mouse. Journal of Anatomy, 2023, 243, 223-234.	0.9	3
2	Retinal Plasticity. International Journal of Molecular Sciences, 2022, 23, 1138.	1.8	6
3	Retinal Pigment Epithelium Remodeling in Mouse Models of Retinitis Pigmentosa. International Journal of Molecular Sciences, 2021, 22, 5381.	1.8	20
4	Knockout of CaV1.3 L-type calcium channels in a mouse model of retinitis pigmentosa. Scientific Reports, 2021, 11, 15146.	1.6	2
5	Inner retinal preservation in the photoinducible I307N rhodopsin mutant mouse, a model of autosomal dominant retinitis pigmentosa. Journal of Comparative Neurology, 2020, 528, 1502-1522.	0.9	17
6	Advancing Clinical Trials for Inherited Retinal Diseases: Recommendations from the Second Monaciano Symposium. Translational Vision Science and Technology, 2020, 9, 2.	1.1	56
7	Myriocin Effect on Tvrm4 Retina, an Autosomal Dominant Pattern of Retinitis Pigmentosa. Frontiers in Neuroscience, 2020, 14, 372.	1.4	11
8	Retinal Phenotype in the rd9 Mutant Mouse, a Model of X-Linked RP. Frontiers in Neuroscience, 2019, 13, 991.	1.4	16
9	Rescuing cones and daylight vision in retinitis pigmentosa mice. FASEB Journal, 2019, 33, 10177-10192.	0.2	24
10	Site-specific abnormalities in the visual system of a mouse model of CDKL5 deficiency disorder. Human Molecular Genetics, 2019, 28, 2851-2861.	1.4	30
11	Novel ophthalmic formulation of myriocin: implications in retinitis pigmentosa. Drug Delivery, 2019, 26, 237-243.	2.5	28
12	The NGF ^{R100W} Mutation Specifically Impairs Nociception without Affecting Cognitive Performance in a Mouse Model of Hereditary Sensory and Autonomic Neuropathy Type V. Journal of Neuroscience, 2019, 39, 9702-9715.	1.7	18
13	Brn3a and Brn3b knockout mice display unvaried retinal fine structure despite major morphological and numerical alterations of ganglion cells. Journal of Comparative Neurology, 2019, 527, 187-211.	0.9	14
14	All amacrine cells in the primate fovea contribute to photopic vision. Scientific Reports, 2018, 8, 16429.	1.6	27
15	Determination of the serine palmitoyl transferase inhibitor myriocin by electrospray and Qâ€ŧrap mass spectrometry. Biomedical Chromatography, 2017, 31, e4026.	0.8	7
16	Pattern of retinal morphological and functional decay in a light-inducible, rhodopsin mutant mouse. Scientific Reports, 2017, 7, 5730.	1.6	22
17	Involvement of Autophagic Pathway in the Progression of Retinal Degeneration in a Mouse Model of Diabetes. Frontiers in Cellular Neuroscience, 2016, 10, 42.	1.8	74
18	AAV-Mediated Clarin-1 Expression in the Mouse Retina: Implications for USH3A Gene Therapy. PLoS ONE, 2016, 11, e0148874.	1.1	10

ENRICA STRETTOI

#	Article	IF	CITATIONS
19	The bacterial toxin CNF1 as a tool to induce retinal degeneration reminiscent of retinitis pigmentosa. Scientific Reports, 2016, 6, 35919.	1.6	3
20	Visual impairment in FOXG1-mutated individuals and mice. Neuroscience, 2016, 324, 496-508.	1.1	41
21	A Survey of Retinal Remodeling. Frontiers in Cellular Neuroscience, 2015, 9, 494.	1.8	46
22	Pharmacological approaches to retinitis pigmentosa: A laboratory perspective. Progress in Retinal and Eye Research, 2015, 48, 62-81.	7.3	86
23	Fundamental Retinal Circuitry for Circadian Rhythms. , 2014, , 3-26.		1
24	Long-term preservation of cone photoreceptors and visual acuity in rd10 mutant mice exposed to continuous environmental enrichment. Molecular Vision, 2014, 20, 1545-56.	1.1	22
25	Cone survival and preservation of visual acuity in an animal model of retinal degeneration. European Journal of Neuroscience, 2013, 37, 1853-1862.	1.2	36
26	Age-Related Changes in the Daily Rhythm of Photoreceptor Functioning and Circuitry in a Melatonin-Proficient Mouse Strain. PLoS ONE, 2012, 7, e37799.	1.1	18
27	Environmental Enrichment Extends Photoreceptor Survival and Visual Function in a Mouse Model of Retinitis Pigmentosa. PLoS ONE, 2012, 7, e50726.	1.1	55
28	Botulinum Neurotoxin A Impairs Neurotransmission Following Retrograde Transynaptic Transport. Traffic, 2012, 13, 1083-1089.	1.3	79
29	Undersized dendritic arborizations in retinal ganglion cells of the rd1 mutant mouse: A paradigm of early onset photoreceptor degeneration. Journal of Comparative Neurology, 2012, 520, 1406-1423.	0.9	43
30	Long-term Retinal Function and Structure Rescue Using Capsid Mutant AAV8 Vector in the rd10 Mouse, a Model of Recessive Retinitis Pigmentosa. Molecular Therapy, 2011, 19, 234-242.	3.7	135
31	Localization of Melatonin Receptor 1 in Mouse Retina and Its Role in the Circadian Regulation of the Electroretinogram and Dopamine Levels. PLoS ONE, 2011, 6, e24483.	1.1	73
32	Complexity of retinal cone bipolar cells. Progress in Retinal and Eye Research, 2010, 29, 272-283.	7.3	36
33	Inhibition of ceramide biosynthesis preserves photoreceptor structure and function in a mouse model of retinitis pigmentosa. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18706-18711.	3.3	105
34	Melatonin modulates visual function and cell viability in the mouse retina via the MT1 melatonin receptor. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15043-15048.	3.3	113
35	Remodeling of cone photoreceptor cells after rod degeneration in rd mice. Experimental Eye Research, 2009, 88, 589-599.	1.2	143
36	Age-dependent remodelling of retinal circuitry. Neurobiology of Aging, 2009, 30, 819-828.	1.5	58

3

ENRICA STRETTOI

#	Article	IF	CITATIONS
37	<i>Dicer</i> Inactivation Leads to Progressive Functional and Structural Degeneration of the Mouse Retina. Journal of Neuroscience, 2008, 28, 4878-4887.	1.7	204
38	Retinal Ganglion Cells Survive and Maintain Normal Dendritic Morphology in a Mouse Model of Inherited Photoreceptor Degeneration. Journal of Neuroscience, 2008, 28, 14282-14292.	1.7	222
39	Transformation of cone precursors to functional rod photoreceptors by bZIP transcription factor NRL. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1679-1684.	3.3	136
40	Electrophysiological responses of the mouse retina to 12C ions. Neuroscience Letters, 2007, 416, 231-235.	1.0	17
41	Retinal organization in the retinal degeneration 10 (rd10) mutant mouse: A morphological and ERG study. Journal of Comparative Neurology, 2007, 500, 222-238.	0.9	453
42	Basic Retinal Circuitry in Health and Disease. Lecture Notes in Computer Science, 2005, , 99-107.	1.0	0
43	Recruitment of the Rod Pathway by Cones in the Absence of Rods. Journal of Neuroscience, 2004, 24, 7576-7582.	1.7	77
44	Inner retinal abnormalities in a mouse model of Leber's congenital amaurosis. Journal of Comparative Neurology, 2004, 469, 351-359.	0.9	65
45	Bipolar cells of the mouse retina: A gene gun, morphological study. Journal of Comparative Neurology, 2004, 476, 254-266.	0.9	82
46	Neural remodeling in retinal degeneration. Progress in Retinal and Eye Research, 2003, 22, 607-655.	7.3	772
47	Remodeling of second-order neurons in the retina of rd/rd mutant mice. Vision Research, 2003, 43, 867-877.	0.7	216
48	The Spatial Order of Horizontal Cells Is Not Affected by Massive Alterations in the Organization of Other Retinal Cells. Journal of Neuroscience, 2003, 23, 9924-9928.	1.7	24
49	Morphological and Functional Abnormalities in the Inner Retina of the rd/rd Mouse. Journal of Neuroscience, 2002, 22, 5492-5504.	1.7	298
50	Retinal organization in the bcl-2-overexpressing transgenic mouse. Journal of Comparative Neurology, 2002, 446, 1-10.	0.9	68
51	Pattern of synaptic excitation and inhibition upon direction-selective retinal ganglion cells. Journal of Comparative Neurology, 2002, 449, 195-205.	0.9	58
52	The spatial organization of cholinergic mosaics in the adult mouse retina. European Journal of Neuroscience, 2000, 12, 3819-3822.	1.2	30
53	Optic Nerve Crush: Axonal Responses in Wild-Type and bcl-2 Transgenic Mice. Journal of Neuroscience, 1999, 19, 8367-8376.	1.7	121
54	Protection of retinal ganglion cells and preservation of function after optic nerve lesion in bcl-2 transgenic mice. Vision Research, 1998, 38, 1537-1543.	0.7	38

ENRICA STRETTOI

#	Article	IF	CITATIONS
55	The Major Cell Populations of the Mouse Retina. Journal of Neuroscience, 1998, 18, 8936-8946.	1.7	1,220
56	Axonal Transport Blockade in the Neonatal Rat Optic Nerve Induces Limited Retinal Ganglion Cell Death. Journal of Neuroscience, 1997, 17, 7045-7052.	1.7	25
57	Protection of Retinal Ganglion Cells from Natural and Axotomy-Induced Cell Death in Neonatal Transgenic Mice Overexpressing bcl-2. Journal of Neuroscience, 1996, 16, 4186-4194.	1.7	224
58	The number of unidentified amacrine cells in the mammalian retina. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 14906-14911.	3.3	110
59	Long-term Survival of Retina Optic Nerve Section in Adult Ganglion Cells Followingbcl-2Transgenic Mice. European Journal of Neuroscience, 1996, 8, 1735-1745.	1.2	138
60	Cone bipolar cells as interneurons in the rod, pathway of the rabbit retina. Journal of Comparative Neurology, 1994, 347, 139-149.	0.9	99
61	The Peripheral-Type Benzodiazepine Receptor Ligands [3H]Ro 5-4864 and [3H]PK 11195 Bind to the Retina of Rabbit, but Not of Turtle. Journal of Neurochemistry, 1993, 61, 1263-1269.	2.1	6
62	Appearance of cGMP-phosphodiesterase immunoreactivity parallels the morphological differentiation of photoreceptor outer segments in the rat retina. Visual Neuroscience, 1993, 10, 395-402.	0.5	12
63	Synaptic connections of the narrow-field, bistratified rod amacrine cell (AII) in the rabbit retina. Journal of Comparative Neurology, 1992, 325, 152-168.	0.9	325
64	Synaptic connections of rod bipolar cells in the inner plexiform layer of the rabbit retina. Journal of Comparative Neurology, 1990, 295, 449-466.	0.9	213
65	Santiago Ram�n Y Cajal, the retina and the neuron theory. Documenta Ophthalmologica, 1989, 71, 123-141.	1.0	10
66	Involvement of D1 and D2 Dopamine Receptors in the Control of Horizontal Cell Electrical Coupling in the Turtle Retina. European Journal of Neuroscience, 1989, 1, 247-257.	1.2	22