Llanos Mora-LÃ³pez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/531575/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Data driven tools to assess the location of photovoltaic facilities in urban areas. Expert Systems With Applications, 2022, 203, 117349.	7.6	7
2	Binding data mining and expert knowledge for one-day-ahead prediction of hourly global solar radiation. Expert Systems With Applications, 2021, 167, 114147.	7.6	13
3	Parameters extraction of single diode model for degraded photovoltaic modules. Renewable Energy, 2021, 164, 674-686.	8.9	48
4	New approach to estimate 5-min global solar irradiation data on tilted planes from horizontal measurement. Renewable Energy, 2020, 145, 2477-2488.	8.9	20
5	Energy performance assessment of monocrystalline and polycrystalline photovoltaic modules in the tropical mountain climate: The case for Manizales-Colombia. Energy Reports, 2020, 6, 2828-2835.	5.1	12
6	Smart Solar Micro-exchangers for Sustainable Mobility of University Camps. IOP Conference Series: Materials Science and Engineering, 2020, 960, 042011.	0.6	0
7	Reliability of Explicit Methods to Identify the Parameters of PV Panels with Degraded Series Resistance: An Experimental Comparison. Lecture Notes in Electrical Engineering, 2020, , 145-158.	0.4	0
8	Real-Time Procedure to Detect Losses in Photovoltaic Generators Using the Instantaneous and the Translated Performance Ratio. Lecture Notes in Electrical Engineering, 2020, , 463-472.	0.4	0
9	Measuring urban energy sustainability and its application to two Spanish cities: Malaga and Barcelona. Sustainable Cities and Society, 2019, 45, 335-347.	10.4	38
10	A data mining system for predicting solar global spectral irradiance. Performance assessment in the spectral response ranges of thin-film photovoltaic modules. Renewable Energy, 2019, 133, 828-839.	8.9	5
11	Models for the Optimization and Evaluation of Photovoltaic Self-Consumption Facilities. , 2019, , .		1
12	Structural, morphological, electrical and optical properties of amorphous InxAl1-xN thin films for photovoltaic applications. Journal of Non-Crystalline Solids, 2018, 499, 328-336.	3.1	2
13	Influence of time resolution in the estimation of self-consumption and self-sufficiency of photovoltaic facilities. Applied Energy, 2018, 229, 990-997.	10.1	18
14	Analysis of self-sufficiency and self-consumption for PV installations for different locations. WEENTECH Proceedings in Energy, 2018, 4, 203-210.	0.0	0
15	New software tool to characterize photovoltaic modules from commercial equipment. WEENTECH Proceedings in Energy, 2018, 4, 211-220.	0.0	3
16	A novel methodology for the pre-classification of façades usable for the decision of installation of installation of integrated PV in buildings: The case for equatorial countries. Energy, 2017, 141, 2264-2276.	8.8	7
17	Analysis of a photovoltaic self-consumption facility with different net metering schemes. International Journal of Smart Grid and Clean Energy, 2017, 6, 47-53.	0.4	7
18	Modeling and forecasting hourly global solar radiation using clustering and classification techniques. Solar Energy, 2016, 135, 682-691.	6.1	70

Llanos Mora-LÃ³pez

#	Article	IF	CITATIONS
19	Remote supervision and fault detection on OPC monitored PV systems. Solar Energy, 2016, 137, 424-433.	6.1	38
20	Comparison of two PV array models for the simulation of PV systems using five different algorithms for the parameters identification. Renewable Energy, 2016, 99, 270-279.	8.9	46
21	Analysis and characterization of photovoltaic modules of three different thin-film technologies in outdoor conditions. Applied Energy, 2016, 162, 827-838.	10.1	10
22	Framework for Monitoring and Assessing Small and Medium Solar Energy Plants. Journal of Solar Energy Engineering, Transactions of the ASME, 2015, 137, .	1.8	2
23	An adaptive algorithm for clustering cumulative probability distribution functions using the Kolmogorov–Smirnov two-sample test. Expert Systems With Applications, 2015, 42, 4016-4021.	7.6	25
24	Modelling photovoltaic modules with neural networks using angle of incidence and clearness index. Progress in Photovoltaics: Research and Applications, 2015, 23, 513-523.	8.1	26
25	Methodology to establish the permitted maximum losses due to shading and orientation in photovoltaic applications in buildings. Applied Energy, 2015, 137, 37-45.	10.1	21
26	Modelling the distribution of solar spectral irradiance using data mining techniques. Environmental Modelling and Software, 2014, 53, 163-172.	4.5	23
27	A new model to predict the energy generated by a photovoltaic system connected to the grid in low latitude countries. Solar Energy, 2014, 107, 423-442.	6.1	31
28	Modeling Daily Profiles of Solar Global Radiation Using Statistical and Data Mining Techniques. Lecture Notes in Computer Science, 2014, , 155-166.	1.3	1
29	Losses produced by soiling in the incoming radiation to photovoltaic modules. Progress in Photovoltaics: Research and Applications, 2013, 21, 790-796.	8.1	71
30	Photovoltaic module simulation by neural networks using solar spectral distribution. Progress in Photovoltaics: Research and Applications, 2013, 21, 1222-1235.	8.1	17
31	Multilayer perceptron applied to the estimation of the influence of the solar spectral distribution on thin-film photovoltaic modules. Applied Energy, 2013, 112, 610-617.	10.1	32
32	Data mining and statistical techniques for characterizing the performance of thin-film photovoltaic modules. Expert Systems With Applications, 2013, 40, 7141-7150.	7.6	19
33	Experimental system for current–voltage curve measurement of photovoltaic modules under outdoor conditions. Progress in Photovoltaics: Research and Applications, 2011, 19, 591-602.	8.1	39
34	Comparing distributions with bootstrap techniques: An application to global solar radiation. Mathematics and Computers in Simulation, 2010, 81, 811-819.	4.4	4
35	Binding Machine Learning Models and OPC Technology for Evaluating Solar Energy Systems. Lecture Notes in Computer Science, 2010, , 606-615.	1.3	1
36	An Intelligent Memory Model for Short-Term Prediction: An Application to Global Solar Radiation Data. Lecture Notes in Computer Science, 2010, , 596-605.	1.3	0

Llanos Mora-LÃ³pez

#	Article	IF	CITATIONS
37	Inductive learning models with missing values. Mathematical and Computer Modelling, 2006, 44, 790-806.	2.0	20
38	Modeling time series of climatic parameters with probabilistic finite automata. Environmental Modelling and Software, 2005, 20, 753-760.	4.5	10
39	Economic analysis of small photovoltaic facilities and their regional differences. International Journal of Energy Research, 2004, 28, 245-255.	4.5	8
40	Fuzzy inference systems applied to the daily ultraviolet radiation evaluation (295–385 nm) from daily global radiation. Solar Energy, 2003, 75, 447-454.	6.1	10
41	Using probabilistic finite automata to simulate hourly series of global radiation. Solar Energy, 2003, 74, 235-244.	6.1	14
42	A multivariate qualitative model for the prediction of daily global radiation from three hourly global radiation values. Energy, 2001, 26, 205-215.	8.8	1
43	A general multivariate qualitative model for sizing stand-alone photovoltaic systems. Solar Energy Materials and Solar Cells, 1999, 59, 185-197.	6.2	37
44	Performance analysis of a grid-connected photovoltaic system. Energy, 1999, 24, 93-102.	8.8	88
45	A simple model for sizing stand alone photovoltaic systems. Solar Energy Materials and Solar Cells, 1998, 55, 199-214.	6.2	79
46	Evaluation of a grid-connected photovoltaic system in southern Spain. Renewable Energy, 1998, 15, 527-530.	8.9	36
47	Multiplicative ARMA models to generate hourly series of global irradiation. Solar Energy, 1998, 63, 283-291.	6.1	98
48	Characterization and simulation of hourly exposure series of global radiation. Solar Energy, 1997, 60, 257-270.	6.1	23