Kirill S Glavatskiy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5315622/publications.pdf

Version: 2024-02-01

687220 610775 31 572 13 24 citations h-index g-index papers 33 33 33 520 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mechanical properties of clathrate hydrates: status and perspectives. Energy and Environmental Science, 2012, 5, 6779.	15.6	161
2	Compressibility, thermal expansion coefficient and heat capacity of CH ₄ and CO ₂ hydrate mixtures using molecular dynamics simulations. Physical Chemistry Chemical Physics, 2015, 17, 2869-2883.	1.3	82
3	Numerical solution of the nonequilibrium square-gradient model and verification of local equilibrium for the Gibbs surface in a two-phase binary mixture. Physical Review E, 2009, 79, 031608.	0.8	27
4	Local equilibrium of the Gibbs interface in two-phase systems. Europhysics Letters, 2012, 97, 40002.	0.7	26
5	Toward a Possibility To Exchange CO ₂ and CH ₄ in sI Clathrate Hydrates. Journal of Physical Chemistry B, 2012, 116, 3745-3753.	1.2	24
6	Thermodynamic Resistance to Matter Flow at The Interface of a Porous Membrane. Langmuir, 2016, 32, 3400-3411.	1.6	23
7	Nonequilibrium properties of a two-dimensionally isotropic interface in a two-phase mixture as described by the square gradient model. Physical Review E, 2008, 77, 061101.	0.8	22
8	Transport of heat and mass in a two-phase mixture: From a continuous to a discontinuous description. Journal of Chemical Physics, 2010, 133, 144709.	1.2	19
9	Resistances for heat and mass transfer through a liquid–vapor interface in a binary mixture. Journal of Chemical Physics, 2010, 133, 234501.	1.2	15
10	Effect of pore size on the interfacial resistance of a porous membrane. Journal of Membrane Science, 2017, 524, 738-745.	4.1	15
11	Dynamic resettlement as a mechanism of phase transitions in urban configurations. Physical Review E, 2019, 99, 042143.	0.8	14
12	Thermal phenomena associated with water transport across a fuel cell membrane: Soret and Dufour effects. Journal of Membrane Science, 2013, 431, 96-104.	4.1	13
13	Linear and nonlinear density response functions for a simple atomic fluid. Journal of Chemical Physics, 2013, 139, 044510.	1,2	13
14	Nonlocal response functions for predicting shear flow of strongly inhomogeneous fluids. I. Sinusoidally driven shear and sinusoidally driven inhomogeneity. Physical Review E, 2015, 91, 062132.	0.8	13
15	Nonlocal response functions for predicting shear flow of strongly inhomogeneous fluids. II. Sinusoidally driven shear and multisinusoidal inhomogeneity. Physical Review E, 2015, 92, 012108.	0.8	12
16	City structure shapes directional resettlement flows in Australia. Scientific Reports, 2020, 10, 8235.	1.6	12
17	Explaining herding and volatility in the cyclical price dynamics of urban housing markets using a large-scale agent-based model. SN Business & Economics, 2021, 1, 1.	0.6	12
18	Effect of compressibility in bubble formation in closed systems. Journal of Chemical Physics, 2013, 138, 204708.	1.2	11

#	Article	IF	Citations
19	The impact of social influence in Australian real estate: market forecasting with a spatial agent-based model. Journal of Economic Interaction and Coordination, 2023, 18, 5-57.	0.4	10
20	On the relation between the Langmuir and thermodynamic flux equations. Frontiers in Physics, 2014, 1, .	1.0	7
21	Lagrangian formulation of irreversible thermodynamics and the second law of thermodynamics. Journal of Chemical Physics, 2015, 142, 204106.	1.2	7
22	Local equilibrium and the second law of thermodynamics for irreversible systems with thermodynamic inertia. Journal of Chemical Physics, 2015, 143, 164101.	1.2	6
23	Surface tension of molecular liquids: Lattice gas approach. Journal of Molecular Liquids, 2017, 235, 119-125.	2.3	5
24	Complexity Economics in a Time of Crisis: Heterogeneous Agents, Interconnections, and Contagion. Systems, 2021, 9, 73.	1.2	5
25	Non-equilibrium thermodynamics for surfaces; square gradient theory. European Physical Journal: Special Topics, 2013, 222, 161-175.	1.2	4
26	Interfacially driven transport theory: a way to unify Marangoni and osmotic flows. Physical Chemistry Chemical Physics, 2019, 21, 10114-10124.	1.3	4
27	Curvature dependence of the interfacial heat and mass transfer coefficients. Journal of Chemical Physics, 2014, 140, 104708.	1.2	3
28	Diffusive Resettlement: Irreversible Urban Transitions in Closed Systems. Entropy, 2021, 23, 66.	1.1	3
29	Multicomponent Interfacial Transport. , 2011, , .		3
30	Revealing configurational attractors in the evolution of modern Australian and US cities. Chaos, Solitons and Fractals, 2021, 148, 111079.	2.5	1
31	Fisher Information and synchronisation transitions: A case-study of a finite size multi-network Kuramoto–Sakaguchi system. Physica A: Statistical Mechanics and Its Applications, 2022, 594, 127059.	1.2	O