
Harold S Ruiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5315276/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3D FEM Modeling of \${mathrm CORC}\$ Commercial Cables With Bean's Like Magnetization Currents and Its AC-Losses Behavior. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.1	9
2	Optimum Filament Positions Within a MgB\$_{2}\$ Wire Resulting in Maximum Reduction of AC Losses. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.1	1
3	Impact of the Magneto Angular Dependence of the Critical Current Density in CORC Cables. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-6.	1.1	4
4	Maximum reduction of energy losses in multicore MgB2 wires by metastructured soft-ferromagnetic coatings. Scientific Reports, 2022, 12, 7030.	1.6	2
5	3D Modelling and Validation of the Optimal Pitch in Commercial CORC Cables. IOP Conference Series: Materials Science and Engineering, 2022, 1241, 012030.	0.3	6
6	Computational Modelling of Russia's First 2G-HTS Triaxial Cable. IOP Conference Series: Materials Science and Engineering, 2022, 1241, 012031.	0.3	1
7	Critical State Theory for the Magnetic Coupling between Soft Ferromagnetic Materials and Type-II Superconductors. Materials, 2021, 14, 6204.	1.3	2
8	Normal Zone Propagation Velocity and Minimum Quench Energy of Stainless Steel Double-Layered Superconducting Wires Under External Magnetic Fields. Journal of Superconductivity and Novel Magnetism, 2020, 33, 591-597.	0.8	1
9	GIS-AHP Multi Criteria Decision Analysis for the optimal location of solar energy plants at Indonesia. Energy Reports, 2020, 6, 3249-3263.	2.5	87
10	GIS-Based Assessment of the Technical and Economic Feasibility of Utility-Scale Solar PV Plants: Case Study in West Kalimantan Province. Sustainability, 2020, 12, 6283.	1.6	13
11	Flux front dynamics and energy losses of magnetically anisotropic 2G-HTS pancake coils under prospective winding deformations. Engineering Research Express, 2019, 1, 015037.	0.8	5
12	How to Choose the Superconducting Material Law for the Modelling of 2G-HTS Coils. Materials, 2019, 12, 2679.	1.3	32
13	Local electromagnetic properties and hysteresis losses in uniformly and non-uniformly wound superconducting racetrack coils. Journal of Applied Physics, 2019, 126, .	1.1	5
14	Electric Field and Energy Losses of Rounded Superconducting/Ferromagnetic Heterostructures at Self-Field Conditions. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.1	6
15	Magnetization Profiles of AC Type-II Superconducting Wires Exposed to DC Magnetic Fields. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.1	4
16	Electromagnetic Response of DC Type-II SC Wires Under Oscillating Magnetic Excitations. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.1	4
17	Nature of the low magnetization decay on stacks of second generation superconducting tapes under crossed and rotating magnetic field experiments. Scientific Reports, 2018, 8, 1342.	1.6	27
18	Magnetic characteristics and AC losses of DC type-II superconductors under oscillating magnetic fields. Superconductor Science and Technology, 2018, 31, 035006.	1.8	6

HAROLD S RUIZ

#	Article	IF	CITATIONS
19	Pulsed field magnetization strategies and the field poles composition in a bulk-type superconducting motor. Physica C: Superconductivity and Its Applications, 2017, 534, 73-81.	0.6	10
20	HTS Motor Performance Evaluation by Different Pulsed Field Magnetization Strategies. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.1	8
21	General approach for the determination of the magneto-angular dependence of the critical current of YBCO coated conductors. Superconductor Science and Technology, 2017, 30, 025010.	1.8	20
22	Optimal location and minimum number of superconducting fault current limiters for the protection of power grids. International Journal of Electrical Power and Energy Systems, 2017, 87, 136-143.	3.3	26
23	Power flow analysis and optimal locations of resistive type superconducting fault current limiters. SpringerPlus, 2016, 5, 1972.	1.2	14
24	Study of the Pulsed Field Magnetization Strategy for the Superconducting Rotor. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.1	10
25	Investigation of Demagnetization in HTS Stacked Tapes Implemented in Electric Machines as a Result of Crossed Magnetic Field. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-4.	1.1	32
26	Resistive-Type Superconducting Fault Current Limiters: Concepts, Materials, and Numerical Modeling. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.1	53
27	Experimental Study of the Normal Zone Propagation Velocity in Double-Layer 2G-HTS Wires by Thermal and Electrical Methods. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.1	13
28	Crossed-magnetic-field experiments on stacked second generation superconducting tapes: Reduction of the demagnetization effects. Applied Physics Letters, 2014, 104, .	1.5	52
29	Strong Localization of the Density of Power Losses in Type-II Superconducting Wires. IEEE Transactions on Applied Superconductivity, 2013, 23, 8000404-8000404.	1.1	9
30	Exotic magnetic response of superconducting wires subject to synchronous and asynchronous oscillating excitations. Journal of Applied Physics, 2013, 113, 193906.	1.1	19
31	Superconducting wire subject to synchronous oscillating excitations: Power dissipation, magnetic response, and low-pass filtering. Applied Physics Letters, 2012, 100, .	1.5	24
32	Strength of the phonon-coupling mode in La2â^'xSrxCuO4, Bi2Sr2CaCu2O8+x and Y Ba2Cu3O6+x composites along the nodal direction. Current Applied Physics, 2012, 12, 550-564.	1.1	2
33	Material laws and related uncommon phenomena in the electromagnetic response of type-II superconductors in longitudinal geometry. Superconductor Science and Technology, 2011, 24, 115005.	1.8	7
34	Relevance of the Phonon-Coupling Mode on the Superconducting Pairing Interaction of La2â^'x Sr x CuO4. Journal of Superconductivity and Novel Magnetism, 2011, 24, 1273-1280.	0.8	1
35	Inversion mechanism for the transport current in type-II superconductors. Physical Review B, 2011, 83, .	1.1	16
36	Smooth double critical state theory for type-II superconductors. Superconductor Science and Technology, 2010, 23, 105007.	1.8	16

HAROLD S RUIZ

#	Article	IF	CITATIONS
37	General critical states in type-II superconductors. Physical Review B, 2009, 80, .	1.1	48
38	Nature of the nodal kink in angle-resolved photoemission spectra of cuprate superconductors. Physical Review B, 2009, 79, .	1.1	11
39	Coupling to Phonons in the Migdal–Eliashberg Approach. Journal of Superconductivity and Novel Magnetism, 2008, 21, 21-27.	0.8	5