Hongliang He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5314922/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reactive oxygen species (ROS)-responsive size-reducible nanoassemblies for deeper atherosclerotic plaque penetration and enhanced macrophage-targeted drug delivery. Bioactive Materials, 2023, 19, 115-126.	8.6	21
2	A biomimetic nanocomposite with enzyme-like activities and CXCR4 antagonism efficiently enhances the therapeutic efficacy of acute myeloid leukemia. Bioactive Materials, 2022, 18, 526-538.	8.6	19
3	Anchoring β-CD on simvastatin-loaded rHDL for selective cholesterol crystals dissolution and enhanced anti-inflammatory effects in macrophage/foam cells. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 174, 144-154.	2.0	3
4	Nanodisc delivery of liver X receptor agonist for the treatment of diabetic nephropathy. Journal of Controlled Release, 2022, 348, 1016-1027.	4.8	8
5	Overview of Humira® Biosimilars: Current European Landscape and Future Implications. Journal of Pharmaceutical Sciences, 2021, 110, 1572-1582.	1.6	22
6	Artificial <scp>highâ€density lipoproteinâ€mimicking</scp> nanotherapeutics for the treatment of cardiovascular diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1737.	3.3	11
7	Nanoparticle-based "Two-pronged―approach to regress atherosclerosis by simultaneous modulation of cholesterol influx and efflux. Biomaterials, 2020, 260, 120333.	5.7	27
8	Synthetic high-density lipoproteins loaded with an antiplatelet drug for efficient inhibition of thrombosis in mice. Science Advances, 2020, 6, .	4.7	11
9	Synergetic Effect of rHDL and LXR Agonist on Reduction of Atherosclerosis in Mice. Frontiers in Pharmacology, 2020, 11, 513031.	1.6	10
10	Survey of Clinical Translation of Cancer Nanomedicines—Lessons Learned from Successes and Failures. Accounts of Chemical Research, 2019, 52, 2445-2461.	7.6	333
11	Drug-Conjugated Dendrimer Hydrogel Enables Sustained Drug Release via a Self-Cleaving Mechanism. Molecular Pharmaceutics, 2019, 16, 1874-1880.	2.3	23
12	Advances on Non-Genetic Cell Membrane Engineering for Biomedical Applications. Polymers, 2019, 11, 2017.	2.0	10
13	Curcumin-mediated regulation of intestinal barrier function: The mechanism underlying its beneficial effects. Tissue Barriers, 2018, 6, e1425085.	1.6	59
14	Cholangiocyteâ€derived exosomal long noncoding RNA H19 promotes cholestatic liver injury in mouse and humans. Hepatology, 2018, 68, 599-615.	3.6	115
15	Sterol carrier protein-2 deficiency attenuates diet-induced dyslipidemia and atherosclerosis in mice. Journal of Biological Chemistry, 2018, 293, 9223-9231.	1.6	14
16	Development of mannose functionalized dendrimeric nanoparticles for targeted delivery to macrophages: use of this platform to modulate atherosclerosis. Translational Research, 2018, 193, 13-30.	2.2	63
17	Leutusome: A Biomimetic Nanoplatform Integrating Plasma Membrane Components of Leukocytes and Tumor Cells for Remarkably Enhanced Solid Tumor Homing. Nano Letters, 2018, 18, 6164-6174.	4.5	111
18	Intestine-specific expression of human chimeric intestinal alkaline phosphatase attenuates Western diet-induced barrier dysfunction and glucose intolerance. Physiological Reports, 2018, 6, e13790.	0.7	24

HONGLIANG HE

#	Article	IF	CITATIONS
19	Polyamidoamine Dendrimer Microgels: Hierarchical Arrangement of Dendrimers into Micrometer Domains with Expanded Structural Features for Programmable Drug Delivery and Release. Macromolecules, 2018, 51, 6111-6118.	2.2	30
20	Influence of Fatty Acid Modification on Uptake of Lovastatin-Loaded Reconstituted High Density Lipoprotein by Foam Cells. Pharmaceutical Research, 2018, 35, 134.	1.7	3
21	Abstract 578: Macrophage Cholesterol Levels Modulate Ion Channel Activity: Effect(s) on Ion Flux Dependent Inflammatory Events. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, .	1.1	0
22	Bolstering cholesteryl ester hydrolysis in liver: A hepatocyte-targeting gene delivery strategy for potential alleviation of atherosclerosis. Biomaterials, 2017, 130, 1-13.	5.7	25
23	In Situ-Forming Polyamidoamine Dendrimer Hydrogels with Tunable Properties Prepared via Aza-Michael Addition Reaction. ACS Applied Materials & Interfaces, 2017, 9, 10494-10503.	4.0	56
24	Nanomedicines for dysfunctional macrophage-associated diseases. Journal of Controlled Release, 2017, 247, 106-126.	4.8	43
25	A novel molecularly imprinted method with computational simulation for the affinity isolation and knockout of baicalein from <i>Scutellaria baicalensis</i> . Biomedical Chromatography, 2016, 30, 117-125.	0.8	12
26	Synthesis of surface nano-molecularly imprinted polymers for sensitive baicalin detection in biological samples. RSC Advances, 2015, 5, 41377-41384.	1.7	18
27	Suppression of Remodeling Behaviors with Arachidonic Acid Modification for Enhanced in vivo Antiatherogenic Efficacies of Lovastatin-loaded Discoidal Recombinant High Density Lipoprotein. Pharmaceutical Research, 2015, 32, 3415-3431.	1.7	9
28	Molecularly imprinted polymers based on SBA-15 for selective solid-phase extraction of baicalein from plasma samples. Analytical and Bioanalytical Chemistry, 2015, 407, 509-519.	1.9	35
29	A Novel Molecularly Imprinted Polymer for the Solid-Phase Extraction of Tanshinones from Serum. Analytical Letters, 2015, 48, 47-60.	1.0	6
30	Hyaluronic acid-decorated reconstituted high density lipoprotein targeting atherosclerotic lesions. Biomaterials, 2014, 35, 8002-8014.	5.7	56
31	Arachidonic Acid-Modified Lovastatin Discoidal Reconstituted High Density Lipoprotein Markedly Decreases the Drug Leakage during the Remodeling Behaviors Induced by Lecithin Cholesterol Acyltransferase. Pharmaceutical Research, 2014, 31, 1689-1709.	1.7	22
32	A novel modified paclitaxel-loaded discoidal recombinant high-density lipoproteins: Preparation, characterizations andÂinÂvivo evaluation. Asian Journal of Pharmaceutical Sciences, 2013, 8, 11-18.	4.3	13
33	Pharmacokinetics and atherosclerotic lesions targeting effects of tanshinone IIA discoidal and spherical biomimetic high density lipoproteins. Biomaterials, 2013, 34, 306-319.	5.7	79
34	Tumor targeting effects of a novel modified paclitaxel-loaded discoidal mimic high density lipoproteins. Drug Delivery, 2013, 20, 356-363.	2.5	37
35	Preparation, Characterizations, and In Vitro Metabolic Processes of Paclitaxel-Loaded Discoidal Recombinant High-Density Lipoproteins. Journal of Pharmaceutical Sciences, 2012, 101, 2900-2908.	1.6	25