
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5314601/publications.pdf Version: 2024-02-01

<u> 7н Нг 7 Нг</u>

#	Article	IF	CITATIONS
1	Two Faces of One Seed: Hormonal Regulation of Dormancy and Germination. Molecular Plant, 2016, 9, 34-45.	3.9	709
2	Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nature Genetics, 2008, 40, 1370-1374.	9.4	706
3	Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1192-200.	3.3	697
4	Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated <i>ABI3</i> activation in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15485-15490.	3.3	442
5	Perception of Brassinosteroids by the Extracellular Domain of the Receptor Kinase BRI1. Science, 2000, 288, 2360-2363.	6.0	439
6	Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science, 2017, 355, 962-965.	6.0	439
7	Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnology Journal, 2007, 5, 313-324.	4.1	350
8	ELONGATED UPPERMOST INTERNODE Encodes a Cytochrome P450 Monooxygenase That Epoxidizes Gibberellins in a Novel Deactivation Reaction in Rice. Plant Cell, 2006, 18, 442-456.	3.1	340
9	Dual Regulation Role of <i>GH3.5</i> in Salicylic Acid and Auxin Signaling during Arabidopsis- <i>Pseudomonas syringae</i> Interaction. Plant Physiology, 2007, 145, 450-464.	2.3	268
10	Genetic and epigenetic control of plant heat responses. Frontiers in Plant Science, 2015, 06, 267.	1.7	260
11	Roles of Plant Hormones and Their Interplay in Rice Immunity. Molecular Plant, 2013, 6, 675-685.	3.9	235
12	The receptor kinase <i><scp>CERK</scp>1</i> has dual functions in symbiosis and immunity signalling. Plant Journal, 2015, 81, 258-267.	2.8	232
13	The Rice 14-3-3 Gene Family and its Involvement in Responses to Biotic and Abiotic Stress. DNA Research, 2006, 13, 53-63.	1.5	211
14	Overexpression of receptor-like kinase ERECTA improves thermotolerance in rice and tomato. Nature Biotechnology, 2015, 33, 996-1003.	9.4	171
15	A DELLA protein complex controls the arbuscular mycorrhizal symbiosis in plants. Cell Research, 2014, 24, 130-133.	5.7	168
16	Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in rice. Nature Plants, 2019, 5, 389-400.	4.7	151
17	A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice. Nature Communications, 2017, 8, 14789.	5.8	149
18	An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis. Cell Research, 2019, 29, 379-390.	5.7	149

#	Article	IF	CITATIONS
19	The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin pathway. Plant Journal, 2012, 71, 763-775.	2.8	140
20	OsCERK1-Mediated Chitin Perception and Immune Signaling Requires Receptor-like Cytoplasmic Kinase 185 to Activate an MAPK Cascade in Rice. Molecular Plant, 2017, 10, 619-633.	3.9	135
21	Genetic characterization and fine mapping of the blast resistance locus Pigm(t) tightly linked to Pi2 and Pi9 in a broad-spectrum resistant Chinese variety. Theoretical and Applied Genetics, 2006, 113, 705-713.	1.8	130
22	Exploiting Broad-Spectrum Disease Resistance in Crops: From Molecular Dissection to Breeding. Annual Review of Plant Biology, 2020, 71, 575-603.	8.6	125
23	GDSL lipases modulate immunity through lipid homeostasis in rice. PLoS Pathogens, 2017, 13, e1006724.	2.1	124
24	Altered Disease Development in the eui Mutants and Eui Overexpressors Indicates that Gibberellins Negatively Regulate Rice Basal Disease Resistance. Molecular Plant, 2008, 1, 528-537.	3.9	123
25	Ca2+ sensor-mediated ROS scavenging suppresses rice immunity and is exploited by a fungal effector. Cell, 2021, 184, 5391-5404.e17.	13.5	117
26	Growth–defense trade-offs in plants. Current Biology, 2022, 32, R634-R639.	1.8	117
27	An E3ÂUbiquitin Ligase-BAG Protein Module Controls Plant Innate Immunity and Broad-Spectrum Disease Resistance. Cell Host and Microbe, 2016, 20, 758-769.	5.1	109
28	Rice functional genomics: decades' efforts and roads ahead. Science China Life Sciences, 2022, 65, 33-92.	2.3	107
29	A LysM Receptor Heteromer Mediates Perception of Arbuscular Mycorrhizal Symbiotic Signal in Rice. Molecular Plant, 2019, 12, 1561-1576.	3.9	106
30	Warm temperatures induce transgenerational epigenetic release of RNA silencing by inhibiting siRNA biogenesis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9171-9176.	3.3	104
31	BENT UPPERMOST INTERNODE1 Encodes the Class II Formin FH5 Crucial for Actin Organization and Rice Development Â. Plant Cell, 2011, 23, 661-680.	3.1	98
32	An SHR–SCR module specifies legume cortical cell fate to enable nodulation. Nature, 2021, 589, 586-590.	13.7	97
33	Two Arabidopsis cytochrome P450 monooxygenases, CYP714A1 and CYP714A2, function redundantly in plant development through gibberellin deactivation. Plant Journal, 2011, 67, 342-353.	2.8	93
34	Proteomic analysis of rice plasma membrane reveals proteins involved in early defense response to bacterial blight. Proteomics, 2007, 7, 1529-1539.	1.3	86
35	Small DNA Methylation, Big Player in Plant Abiotic Stress Responses and Memory. Frontiers in Plant Science, 2020, 11, 595603.	1.7	82
36	Rice RING protein OsBBI1 with E3 ligase activity confers broad-spectrum resistance against Magnaporthe oryzae by modifying the cell wall defence. Cell Research, 2011, 21, 835-848.	5.7	80

#	Article	IF	CITATIONS
37	Control of Rice Embryo Development, Shoot Apical Meristem Maintenance, and Grain Yield by a Novel Cytochrome P450. Molecular Plant, 2013, 6, 1945-1960.	3.9	79
38	Arabidopsis Thylakoid Formation 1 Is a Critical Regulator for Dynamics of PSII–LHCII Complexes in Leaf Senescence and Excess Light. Molecular Plant, 2013, 6, 1673-1691.	3.9	78
39	Disruption of <i>Os<scp>SULTR</scp>3;3</i> reduces phytate and phosphorus concentrations and alters the metabolite profile in rice grains. New Phytologist, 2016, 211, 926-939.	3.5	72
40	RRM Transcription Factors Interact with NLRs and Regulate Broad-Spectrum Blast Resistance in Rice. Molecular Cell, 2019, 74, 996-1009.e7.	4.5	69
41	A Novel Protein RLS1 with NB–ARM Domains Is Involved in Chloroplast Degradation during Leaf Senescence in Rice. Molecular Plant, 2012, 5, 205-217.	3.9	68
42	Sugar homeostasis mediated by cell wall invertase <scp>GRAIN INCOMPLETE FILLING</scp> 1 (<scp>GIF1</scp>) plays a role in preâ€existing and induced defence in rice. Molecular Plant Pathology, 2014, 15, 161-173.	2.0	67
43	OsRAR1 and OsSGT1 Physically Interact and Function in Rice Basal Disease Resistance. Molecular Plant-Microbe Interactions, 2008, 21, 294-303.	1.4	66
44	NLRs guard metabolism to coordinate pattern- and effector-triggered immunity. Nature, 2022, 601, 245-251.	13.7	66
45	Induction of H2O2 in transgenic rice leads to cell death and enhanced resistance to both bacterial and fungal pathogens. Transgenic Research, 2003, 12, 577-586.	1.3	63
46	Molecular Basis of Disease Resistance and Perspectives on Breeding Strategies for Resistance Improvement in Crops. Molecular Plant, 2020, 13, 1402-1419.	3.9	59
47	Gibberellin homeostasis and plant height control by EUI and a role for gibberellin in root gravity responses in rice. Cell Research, 2008, 18, 412-421.	5.7	56
48	A plasma membrane transporter coordinates phosphate reallocation and grain filling in cereals. Nature Genetics, 2021, 53, 906-915.	9.4	55
49	Transformation of rice with the Arabidopsis floral regulator LEAFY causes early heading. Transgenic Research, 2000, 9, 223-227.	1.3	54
50	Fine mapping and candidate gene analysis of the novel thermo-sensitive genic male sterility tms9-1 gene in rice. Theoretical and Applied Genetics, 2014, 127, 1173-1182.	1.8	50
51	The Systemic Acquired Resistance Regulator OsNPR1 Attenuates Growth by Repressing Auxin Signaling through Promoting IAA-Amido Synthase Expression. Plant Physiology, 2016, 172, 546-558.	2.3	50
52	Expression profiling of rice genes in early defense responses to blast and bacterial blight pathogens using cDNA microarray. Physiological and Molecular Plant Pathology, 2006, 68, 51-60.	1.3	49
53	Duplication and independent selection of cell-wall invertase genes GIF1 and OsCIN1 during rice evolution and domestication. BMC Evolutionary Biology, 2010, 10, 108.	3.2	44
54	Alpha-picolinic acid, a fungal toxin and mammal apoptosis-inducing agent, elicits hypersensitive-like response and enhances disease resistance in rice. Cell Research, 2004, 14, 27-33.	5.7	42

2004, 64, 263-271. 84 36 Plasma Membrane Localization and Potential Endocytosis of Constitutively Expressed XA21 Proteins in Transgenic Rice. Molecular Plant, 2010, 3, 917-926. 3.9 3 57 citylesen. Molecular Plant, 2010, 3, 917-926. 3.9 3 57 citylesentic repression of citylesep. O(sep):sesep):MADS (sleep):S8(b) in rice palea development. Plant Journal, 2015, 82, 122-24. 2.8 3 58 SCRAMBEDISTRUBBEDISTRUBBEDIST 2.8 3 59 BEAKSHAPED CHINERIC PALEA (sep): 14(b) encoding an (sep):EMF (sep):14CHk kinase SCRAMBEDISTRUBBEDIST 2.8 3 59 BEAKSHAPED CHINERIC Concordinating cell proliferation and differentiation during Arabidopsis leaf development. Plant Journal, 2012, 72, 707-720. 3 60 Quantitative trait locus analysis and fine mapping of the qPL6 locus for panicle length in rice. Theoretical and Applied Cenetics, 2013, 156, 275-283. 1.8 3 61 An MKP-MAPK protein phosphorylation cascade controls vascular immunity in plants. Science Advances, 2022, 8, eabg723. 1.7 3 62 Characterization and Fine Mapping of a Novel Rice Albino Mutant low temperature albino 1. Journal of Genetics and Genomics, 2012, 39, 385-396. 1.7 3 63 STRIPE2 Encodes a Putative dCMP Deaminase that Plays an Important Role in Chloroplast Development in Rice, 2019, 374, 20180308.	#	Article	IF	CITATIONS
38 Transgenic Rice. Molecular Plant, 2010, 3, 917-926. 3.9 3 37 c) cscp CURVED CHIMERIC PALEA 1 (i) encoding an cscp>EMF (fscp) 16CH palea development. Plant 2.8 3 38 Characterization of temperature86sensitive mutants reveals a role for receptor86kHke kinase 2.8 3 39 BEAK-SHAPED CRAN 1/TRIABLEU in coordinating cell proliferation and differentiation during Arabidopsis leaf 2.8 3 60 Quantitative trait locus analysis and fine mapping of the qPL6 locus for panicle length in rice. 1.8 3 60 Quantitative trait locus analysis and fine mapping of the qPL6 locus for panicle length in rice. 1.8 3 61 An MKP-MAPK protein phosphorylation cascade controls vascular immunity in plants. Science 4.7 3 62 Characterization and Fine Mapping of a Novel Rice Albino Mutant low temperature albino 1. Journal of 1.7 3 63 Anucleotide-binding site-lsucine-rich receptor pair confers broad-spectrum disease resistance 1.8 3 64 STRUPE12 Encodes a Putative dCMP Deaminase that Plays an Important Role in Chloroplast Development 1.7 3 65 Characterization of Chaetize and Genomics, 2014, 41, 539-548. 1.7 3 66 STRUPE12 Encodes a Putative dCMP Deam	55	cell death, oxidative burst and defence gene expression. Physiological and Molecular Plant Pathology,	1.3	39
67 epigenetic repression of city sceppor/scepp MADS/lscpp58/(b) in rice palea development. Plant 2.8 3 68 Characterization of temperaturea&sensitive mutants reveals a role for receptora&Elke kinase 2.8 3 69 BEAK SHAPED CRAIN 1/TRIANCULAR HULL 1, a DUF640 gene, is associated with grain shape, size and weight 2.3 3 60 Quantitative trait locus analysis and fine mapping of the qPL6 locus for panicle length in rice. 1.8 3 60 Quantitative trait locus analysis and fine mapping of the qPL6 locus for panicle length in rice. 1.8 3 61 An MKP-MAPK protein phosphorylation cascade controls vascular immunity in plants. Science 4.7 3 62 Characterization and fine Mapping of a Novel Rice Albino Mutant low temperature albino 1. Journal of 1.7 3 63 An ucleotide-binding site-leucine-rich repeat receptor pair confers broad-spectrum disease resistance 1.8 3 64 STRPE2 Encodes a Putative dCMP Deaminese that Plays an Important Role in Chanophast. Biosynthesis through 1.7 3 65 Congastor fit Receptor Plant downeys. (Cot Scep SCHAD) Sceptor Plant Biology: Act Jla Act Jl	56		3.9	38
58 SCRAMBLED/STRUBBELG in coordinating cell proliferation and differentiation during Arabidopsis leaf 2.8 3 59 BEAK-SHAPED CRAIN 1/TRIANCULAR HULL 1, a DUF640 gene, is associated with grain shape, size and weight in rice. Science China Life Sciences, 2013, 56, 275-283. 2.3 3 60 Quantitative trait locus analysis and fine mapping of the qPL6 locus for panicle length in rice. 1.8 3 61 An MKP-MAPK protein phosphorylation cascade controls vascular immunity in plants. Science 4.7 3 62 Characterization and Fine Mapping of a Novel Rice Albino Mutant low temperature albino 1. Journal of Genetics, 2012, 39, 385-396. 1.7 3 63 A nucleotide-binding site-leucine-rich repeat receptor pair confers broad-spectrum disease resistance through physical association in rice. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180308. 1.8 3 64 STRIPE2 Encodes a Putative dCMP Deaminase that Plays an Important Role in Chloroplast Development in Rice. Journal of Genetics and Genomics, 2014, 41, 539-548. 1.7 3 65 Conjugation of Indeleaé36Carboxylic Acid and Cysteine and Upregulation of Camalexin Biosynthesis through Conjugation of Indeleaé36Carboxylic Acid and Cysteine and Upregulation of Camalexin Biosynthesis 4.1 2 66 Striperok (sup - Keine Plant Biology, 2012, 54, 471-485. 0.9 2 2 <td>57</td> <td>epigenetic repression of <i><scp>O</scp>s<scp>MADS</scp>58</i> in rice palea development. Plant</td> <td>2.8</td> <td>38</td>	57	epigenetic repression of <i><scp>O</scp>s<scp>MADS</scp>58</i> in rice palea development. Plant	2.8	38
39 in rice. Science China Life Sciences, 2013, 56, 275-283. 2.3 3 60 Quantitative trait locus analysis and fine mapping of the qPL6 locus for panicle length in rice. Theoretical and Applied Cenetics, 2015, 128, 1151-1161. 1.8 3 61 An MKP-MAPK protein phosphorylation cascade controls vascular immunity in plants. Science Advances, 2022, 8, eabg8723. 4.7 3 62 Characterization and Fine Mapping of a Novel Rice Albino Mutant low temperature albino 1. Journal of Genetics and Genomics, 2012, 39, 385-396. 1.7 3 63 A nucleotide-binding site-leucine-rich repeat receptor pair confers broad-spectrum disease resistance through physical association in rice. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180308. 1.8 3 64 STRIPE2 Encodes a Putative dCMP Deaminase that Plays an Important Role in Chloroplast Development in Rice. Journal of Genetics and Genomics, 2014, 41, 539-548. 1.7 3 65 Conjugation of Indoleá2c3aCraboxylic Acid and Cysteine and Upreguiation of Camalexin Biosynthesis Genes ^{F 4.1 2 66 Salicyloyl-aspartate synthesized by the acetyl-amido synthetase GH3.5 is a potential activator of plant immunity in & amplit/italic&amp.gt.Arabidopsis&amp.gt./italic&amp.gt. Acta Biochimica Et Biophysica Sinica, 2013, 45, 827-836. 0.9 2 67 Rice copine genes <i>OSxccp>BON Sin Acabidopsis CH3.5 regulates salicyl</i>}	58	SCRAMBLED/STRUBBELIG in coordinating cell proliferation and differentiation during Arabidopsis leaf	2.8	36
60 Theoretical and Applied Genetics, 2015, 128, 1151-1161. 1.8 3 61 An MKP-MAPK protein phosphorylation cascade controls vascular immunity in plants. Science Advances, 2022, 8, eabg8723. 4.7 3 61 An MKP-MAPK protein phosphorylation cascade controls vascular immunity in plants. Science Advances, 2022, 8, eabg8723. 4.7 3 62 Characterization and Fine Mapping of a Novel Rice Albino Mutant low temperature albino 1. Journal of Genetics and Genomics, 2012, 39, 385-396. 1.7 3 63 A nucleotide-binding site-leucine-rich repeat receptor pair confers broad-spectrum disease resistance through physical association in rice. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180308. 1.8 3 64 STRIPE2 Encodes a Putative dCMP Deaminase that Plays an Important Role in Chloroplast Development in Rice. Journal of Genetics and Genomics, 2014, 41, 539-548. 1.7 3 64 STRIPE2 Encodes a Putative dCMP Deaminase that Plays an Important Role in Chloroplast Development in Rice. Journal of Indolea6486462 arboxylic Acid and Cysteine and Upregulation of Camalexin Biosynthesis Genes cup> Fk/sup>. Journal of Integrative Plant Biology, 2012, 54, 471-485. 4.1 2 66 Salicyloyl-aspartate synthesized by the acetyl-amido synthetase GH3.5 is a potential activator of plant immunity in <ltalic>Arabidopsis<l italic=""> Acta Biochimica Et Biophysica Sinica, 2013, 45, 827-836. 0.9 2<td>59</td><td></td><td>2.3</td><td>36</td></l></ltalic>	59		2.3	36
Advances, 2022, 8, eabg8723. 4.7 3 62 Characterization and Fine Mapping of a Novel Rice Albino Mutant low temperature albino 1. Journal of Genetics and Genomics, 2012, 39, 385-396. 1.7 3 63 A nucleotide-binding site-leucine-rich repeat receptor pair confers broad-spectrum disease resistance through physical association in rice. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180308. 1.8 3 64 STRIPE2 Encodes a Putative dCMP Deaminase that Plays an Important Role in Chloroplast Development in Rice. Journal of Genetics and Genomics, 2014, 41, 539-548. 1.7 3 65 c) Arabidopsis c/l> AcetylåCAmido Synthetase GH3.5 Involvement in Camalexin Biosynthesis through Conjugation of Indoleä636Carboxylic Acid and Cystelne and Upregulation of Camalexin Biosynthesis 4.1 2 66 Salicyloyl-aspartate synthesized by the acetyl-amido synthetase GH3.5 is a potential activator of plant immunity in & amp;lt;italic>Arabidopsis. Acta Biochimica Et Biophysica Sinica, 2013, 45, 827-836. 0.9 2 67 Rice copine genes <i>>OS Solosysponded bri1-301 Receptor Requires Its Kinase Activity to Promote Growth. Plant Physiology, 2018, 178, 1704-1719. 2.3 2 68 A Temperature-Sensitive Misfolded bri1-301 Receptor Requires Its Kinase Activity to Promote Growth. Plant Physiology, 2018, 178, 1704-1719. 2.3 2 68 A Temperature-Sensit</i>	60		1.8	35
62 Genetics and Genomics, 2012, 39, 385-396. 1.7 3 63 A nucleotide-binding site-leucine-rich repeat receptor pair confers broad-spectrum disease resistance through physical association in rice. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180308. 1.8 3 64 STRIPE2 Encodes a Putative dCMP Deaminase that Plays an Important Role in Chloroplast Development in Rice. Journal of Genetics and Genomics, 2014, 41, 539-548. 1.7 3 64 STRIPE2 Encodes a Putative dCMP Deaminase that Plays an Important Role in Chloroplast Development in Rice. Journal of Genetics and Genomics, 2014, 41, 539-548. 1.7 3 65 cianual.org () Arabidopsis (<i>l</i>) Acetylä (Amido Synthetase GH3.5 Involvement in Camalexin Biosynthesis through Conjugation of Indolea (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	61		4.7	35
63 through physical association in rice. Philosophical Transactions of the Royal Society B: Biological 1.8 3 64 STRIPE2 Encodes a Putative dCMP Deaminase that Plays an Important Role in Chloroplast Development in Rice. Journal of Genetics and Genomics, 2014, 41, 539-548. 1.7 3 64 STRIPE2 Encodes a Putative dCMP Deaminase that Plays an Important Role in Chloroplast Development in Rice. Journal of Genetics and Genomics, 2014, 41, 539-548. 1.7 3 65 article.com Conjugation of Indoleà Since. Journal of Camalexin Biosynthesis through Conjugation of Indoleà 4.1 2 66 Salicyloyl-aspartate synthesized by the acetyl-amido synthetase GH3.5 is a potential activator of plant immunity in & amp;lt;talic>Arabidopsis. Acta Biochimica Et Biophysica 0.9 2 67 Rice copine genes <i>>Os Sos Sinca, 2013, 45, 827-836. 4.1 2 68 A Temperature-Sensitive Misfolded bri1-301 Receptor Requires Its Kinase Activity to Promote Growth. Plant Physiology, 2018, 178, 1704-1719. 2.3 2 68 Arabidopsis CH3.5 regulates salicylic acid-dependent and both NPR1-dependent and independent defense 4.1 2.3 2</i>	62		1.7	32
64 in Rice. Journal of Genetics and Genomics, 2014, 41, 539-548. 1.7 3 65 (i>Arabidopsis Acetylâ Amido Synthetase GH3.5 Involvement in Camalexin Biosynthesis through Conjugation of Indolea 4.1 2 65 (i>Arabidopsis Acetylâ Acetylâ Acid and Cysteine and Upregulation of Camalexin Biosynthesis 4.1 2 66 Salicyloyl-aspartate synthesized by the acetyl-amido synthetase CH3.5 is a potential activator of plant immunity in & amp;lt;italic>Arabidopsis. Acta Biochimica Et Biophysica 0.9 2 67 Rice copine genes <i>>OS Sos Sos Sos 4.1 2 68 A Temperature-Sensitive Misfolded bril-301 Receptor Requires Its Kinase Activity to Promote Growth. Plant Physiology, 2018, 178, 1704-1719. 2.3 2 69 Arabidopsis CH3.5 regulates salicylic acid-dependent and both NPR1-dependent and independent defense 1.0 0.9</i>	63	through physical association in rice. Philosophical Transactions of the Royal Society B: Biological	1.8	31
65 Conjugation of Indoleâ€3â€Carboxylic Acid and Cysteine and Upregulation of Camalexin Biosynthesis 4.1 2 65 Genes ^F . Journal of Integrative Plant Biology, 2012, 54, 471-485. 4.1 2 66 Salicyloyl-aspartate synthesized by the acetyl-amido synthetase GH3.5 is a potential activator of plant immunity in <italic>Arabidopsis</italic>. Acta Biochimica Et Biophysica 0.9 2 66 Rice copine genes <i>>OS<scp>BON</scp>1</i> > and <i>OS<scp>BON</scp>3</i> function as suppressors of broadâ€spectrum disease resistance. Plant Biotechnology Journal, 2018, 16, 1476-1487. 4.1 2 68 A Temperature-Sensitive Misfolded bri1-301 Receptor Requires Its Kinase Activity to Promote Growth. 2.3 2 68 A Temperature-Sensitive Misfolded bri1-301 Receptor Requires Its Kinase Activity to Promote Growth. 2.3 2 68 A Temperature-Sensitive Misfolded bri1-301 Receptor Requires Its Kinase Activity to Promote Growth. 2.3 2 68 A Temperature-Sensitive Misfolded bri1-301 Receptor Requires Its Kinase Activity to Promote Growth. 2.3 2	64		1.7	30
 immunity in &lt;italic&gt;Arabidopsis&lt;/italic&gt;. Acta Biochimica Et Biophysica 0.9 2 Sinica, 2013, 45, 827-836. Rice copine genes <i>>Os<scp>BON</scp>1</i> and <i>>Os<scp>BON</scp>3</i> function as suppressors of broadâ€spectrum disease resistance. Plant Biotechnology Journal, 2018, 16, 1476-1487. A Temperature-Sensitive Misfolded bri1-301 Receptor Requires Its Kinase Activity to Promote Growth. Plant Physiology, 2018, 178, 1704-1719. Arabidopsis GH3.5 regulates salicylic acid-dependent and both NPR1-dependent and independent defense 	65	Conjugation of Indoleâ€3â€Carboxylic Acid and Cysteine and Upregulation of Camalexin Biosynthesis	4.1	29
67 of broadâ€spectrum disease resistance. Plant Biotechnology Journal, 2018, 16, 1476-1487. 4.1 2 68 A Temperature-Sensitive Misfolded bri1-301 Receptor Requires Its Kinase Activity to Promote Growth. Plant Physiology, 2018, 178, 1704-1719. 2.3 2 68 Arabidopsis GH3.5 regulates salicylic acid-dependent and both NPR1-dependent and independent defense 1.0 0	66	immunity in <italic>Arabidopsis</italic> . Acta Biochimica Et Biophysica	0.9	28
Plant Physiology, 2018, 178, 1704-1719.	67		4.1	27
Arabidopsis GH3.5 regulates salicylic acid-dependent and both NPR1-dependent and independent defense responses. Plant Signaling and Behavior, 2008, 3, 537-542.	68	A Temperature-Sensitive Misfolded bri1-301 Receptor Requires Its Kinase Activity to Promote Growth. Plant Physiology, 2018, 178, 1704-1719.	2.3	26
	69	Arabidopsis GH3.5 regulates salicylic acid-dependent and both NPR1-dependent and independent defense responses. Plant Signaling and Behavior, 2008, 3, 537-542.	1.2	25
70Grain Size Selection Using Novel Functional Markers Targeting 14 Genes in Rice. Rice, 2020, 13, 63.1.72	70	Grain Size Selection Using Novel Functional Markers Targeting 14 Genes in Rice. Rice, 2020, 13, 63.	1.7	24
 Physiological and Molecular Features of the Pathosystem <i>Arabidopsis thaliana</i> Lâ€<i>Sclerotinia</i> Libert. Journal of Integrative Plant Biology, 2006, 48, 44-52. 	71		4.1	21

#	Article	IF	CITATIONS
73	Markerâ€free, tissueâ€specific expression of <i>Cry1Ab</i> as a safe transgenic strategy for insect resistance in rice plants. Pest Management Science, 2013, 69, 135-141.	1.7	18
74	Thymidine kinases share a conserved function for nucleotide salvage and play an essential role in <i><scp>A</scp>rabidopsis thaliana</i> growth and development. New Phytologist, 2015, 208, 1089-1103.	3.5	17
75	Transiently Expressed Short Hairpin RNA Targeting 126 kDa Protein of Tobacco Mosaic Virus Interferes with Virus Infection. Acta Biochimica Et Biophysica Sinica, 2006, 38, 22-28.	0.9	15
76	Deep Sequencing Uncovers Rice Long siRNAs and Its Involvement in Immunity Against <i>Rhizoctonia solani</i> . Phytopathology, 2018, 108, 60-69.	1.1	15
77	A novel ABA-hypersensitive mutant in Arabidopsis defines a genetic locus that confers tolerance to xerothermic stress. Planta, 2006, 224, 889-899.	1.6	14
78	Proteomic Analysis of Rice Plasma Membrane-associated Proteins in Response to Chitooligosaccharide Elicitors. Journal of Integrative Plant Biology, 2007, 49, 863-870.	4.1	14
79	Map-Based Cloning and Breeding Application of a Broad-Spectrum Resistance Gene Pigm to Rice Blast. , 2009, , 161-171.		14
80	Elimination of a Retrotransposon for Quenching Genome Instability in Modern Rice. Molecular Plant, 2019, 12, 1395-1407.	3.9	12
81	Differential Requirement of Oryza sativa RAR1 in Immune Receptor-Mediated Resistance of Rice to Magnaporthe oryzae. Molecules and Cells, 2013, 35, 327-334.	1.0	11
82	Characterization and mapping of a novel mutant sms1 (senescence and male sterility 1) in rice. Journal of Genetics and Genomics, 2010, 37, 47-55.	1.7	10
83	Roles of small RNAs in crop disease resistance. Stress Biology, 2021, 1, 1.	1.5	8
84	Genome sequencing of the bacterial blight pathogen DY89031 reveals its diverse virulence and origins of Xanthomonas oryzae pv. oryzae strains. Science China Life Sciences, 2021, 64, 2175-2185.	2.3	7
85	A Viral Protein Suppresses siRNA-directed Interference in Tobacco Mosaic Virus Infection. Acta Biochimica Et Biophysica Sinica, 2005, 37, 248-253.	0.9	5
86	Exploration and selection of elite Sd1 alleles for rice design breeding. Molecular Breeding, 2020, 40, 1.	1.0	5
87	Gibberellins Modulate Abiotic Stress Tolerance in Plants. Scientia Sinica Vitae, 2013, 43, 1119-1126.	0.1	3
88	Molecular cloning of differentially expressed novel rice genes induced byMagnaporthe grisea. Science Bulletin, 1997, 42, 1748-1750.	1.7	2
89	Studies on Innate Immunity in Rice. Scientia Sinica Vitae, 2013, 43, 1016-1029.	0.1	2
90	NADase and now Ca2+ channel, what else to learn about plant NLRs?. Stress Biology, 2021, 1, 1.	1.5	1

#	Article	IF	CITATIONS
91	A combined approach to evaluate total phosphorus/inorganic phosphate levels in plants. STAR Protocols, 2022, 3, 101456.	0.5	1
92	Overview of Rim2/Hipa transposon superfamily: Structure, distribution, transposition and utilization. Progress in Natural Science: Materials International, 2008, 18, 375-379.	1.8	0