

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5314263/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Synthesis of monophosphorylated lipid A precursors using 2-naphthylmethyl ether as a protecting group. Beilstein Journal of Organic Chemistry, 2020, 16, 1955-1962.                   | 1.3 | 2         |
| 2  | One-Pot Multienzyme Synthesis of Rare Ketoses from Glycerol. Journal of Agricultural and Food<br>Chemistry, 2020, 68, 1347-1353.                                                      | 2.4 | 24        |
| 3  | An Isotope-Coded Photocleavable Probe for Quantitative Profiling of Protein <i>O</i> -ClcNAcylation.<br>ACS Chemical Biology, 2019, 14, 4-10.                                         | 1.6 | 54        |
| 4  | Highly regioselective dehexanoylation in fully hexanoylated flavonoids. Tetrahedron Letters, 2018, 59,<br>4442-4447.                                                                  | 0.7 | 3         |
| 5  | Synthesis of flavonoid 2-deoxyglucosides via the Mitsunobu reaction. Tetrahedron Letters, 2018, 59, 3773-3776.                                                                        | 0.7 | 8         |
| 6  | Crystal structure of tebipenem pivoxil. Acta Crystallographica Section E: Crystallographic Communications, 2018, 74, 1215-1217.                                                       | 0.2 | 5         |
| 7  | Recent advances in the synthesis of rare sugars using DHAP-dependent aldolases. Carbohydrate<br>Research, 2017, 452, 108-115.                                                         | 1.1 | 24        |
| 8  | Facile synthesis of acacetin and its derivatives. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3577-3580.                                                                    | 1.0 | 12        |
| 9  | Targeting Tumor Cells by Natural Anti-Carbohydrate Antibodies Using Rhamnose-Functionalized Liposomes. ACS Chemical Biology, 2016, 11, 1205-1209.                                     | 1.6 | 36        |
| 10 | Transforming Flask Reaction into Cell-Based Synthesis: Production of Polyhydroxylated Molecules via<br>Engineered <i>Escherichia coli</i> . ACS Catalysis, 2015, 5, 4060-4065.        | 5.5 | 24        |
| 11 | Characterization of glycerol phosphate oxidase from Streptococcus pneumoniae and its application for ketose synthesis. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 504-507. | 1.0 | 6         |
| 12 | Synthesis of D-Sorbose and D-Psicose by Recombinant <i>Escherichia coli</i> . Journal of Carbohydrate Chemistry, 2015, 34, 349-357.                                                   | 0.4 | 10        |
| 13 | Enzymatic synthesis of rare sugars with l-rhamnulose-1-phosphate aldolase from Thermotoga<br>maritima MSB8. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3980-3983.          | 1.0 | 10        |
| 14 | Labeling of Enveloped Virus via Metabolic Incorporation of Azido Sugars. Bioconjugate Chemistry,<br>2015, 26, 1868-1872.                                                              | 1.8 | 30        |
| 15 | Solvent-Free Per-O-acetylation of Carbohydrates. Asian Journal of Chemistry, 2014, 26, 4367-4369.                                                                                     | 0.1 | 4         |
| 16 | Thin Layer Chromatography. Current Protocols in Essential Laboratory Techniques, 2014, 8, 6.3.1.                                                                                      | 2.6 | 25        |
| 17 | <i>In Vivo</i> Virus-Based Macrofluorogenic Probes Target Azide-Labeled Surface Glycans in MCF-7<br>Breast Cancer Cells. Molecular Pharmaceutics, 2013, 10, 43-50.                    | 2.3 | 7         |
| 18 | Incorporation of azide sugar analogue decreases tumorigenic potential of breast cancer cells by reducing cancer stem cell population. Science China Chemistry, 2013, 56, 279-285.     | 4.2 | 4         |

**LI CAI** 

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | One-pot three-enzyme synthesis of UDP-Glc, UDP-Gal, and their derivatives. Carbohydrate Research, 2013, 373, 76-81.                                                                                                   | 1.1 | 18        |
| 20 | Biosynthesis of rare hexoses using microorganisms and related enzymes. Beilstein Journal of Organic Chemistry, 2013, 9, 2434-2445.                                                                                    | 1.3 | 74        |
| 21 | Recent Progress in Enzymatic Synthesis of Sugar Nucleotides. Journal of Carbohydrate Chemistry, 2012, 31, 535-552.                                                                                                    | 0.4 | 31        |
| 22 | Defining Function of Lipopolysaccharide O-antigen Ligase WaaL Using Chemoenzymatically Synthesized<br>Substrates. Journal of Biological Chemistry, 2012, 287, 5357-5365.                                              | 1.6 | 68        |
| 23 | The <i>wciN</i> Gene Encodes an α-1,3-Galactosyltransferase Involved in the Biosynthesis of the Capsule<br>Repeating Unit of <i>Streptococcus pneumoniae</i> Serotype 6B. Biochemistry, 2012, 51, 5804-5810.          | 1.2 | 35        |
| 24 | One-pot four-enzyme synthesis of ketoses with fructose 1,6-bisphosphate aldolases from Staphylococcus carnosus and rabbit muscle. Carbohydrate Research, 2012, 357, 143-146.                                          | 1.1 | 20        |
| 25 | Discovery of glycosyltransferases using carbohydrate arrays and mass spectrometry. Nature Chemical<br>Biology, 2012, 8, 769-773.                                                                                      | 3.9 | 118       |
| 26 | Substrate specificity of galactokinase from Streptococcus pneumoniae TIGR4 towards galactose, glucose, and their derivatives. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3540-3543.                        | 1.0 | 22        |
| 27 | <scp>l</scp> -Rhamnose Antigen: A Promising Alternative to α-Gal for Cancer Immunotherapies. ACS<br>Chemical Biology, 2011, 6, 185-191.                                                                               | 1.6 | 42        |
| 28 | Substrate Promiscuity of N-Acetylhexosamine 1-Kinases. Molecules, 2011, 16, 6396-6407.                                                                                                                                | 1.7 | 74        |
| 29 | Synthesis of rare sugars with l-fuculose-1-phosphate aldolase (FucA) from Thermus thermophilus HB8.<br>Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5084-5087.                                               | 1.0 | 35        |
| 30 | Enzymatic synthesis of a 6-sialyl lactose analogue using a pH-responsive water-soluble polymer support. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5041-5044.                                              | 1.0 | 7         |
| 31 | Combining carbochips and mass spectrometry to study the donor specificity for the Neisseria meningitidis l²1,3-N-acetylglucosaminyltransferase LgtA. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5025-5028. | 1.0 | 18        |
| 32 | Enzymatic synthesis of d-sorbose and d-psicose with aldolase RhaD: Effect of acceptor configuration on enzyme stereoselectivity. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 7081-7084.                     | 1.0 | 34        |
| 33 | Enzymatic synthesis and properties of uridine-5′-O-(2-thiodiphospho)-N-acetylglucosamine.<br>Carbohydrate Research, 2011, 346, 1576-1580.                                                                             | 1.1 | 9         |
| 34 | Highly Efficient Synthesis of UDPâ€GalNAc/GlcNAc Analogues with Promiscuous Recombinant Human<br>UDPâ€GalNAc Pyrophosphorylase AGX1. Chemistry - A European Journal, 2010, 16, 13343-13345.                           | 1.7 | 44        |
| 35 | Efficient synthesis of galactosylceramide analogues for iNKT cell stimulation. Bioorganic and<br>Medicinal Chemistry Letters, 2010, 20, 3859-3862.                                                                    | 1.0 | 15        |
| 36 | In vitro bacterial polysaccharide biosynthesis: defining the functions of Wzy and Wzz. Nature<br>Chemical Biology, 2010, 6, 418-423.                                                                                  | 3.9 | 144       |

LI CAI

| #  | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Enzymatic route to preparative-scale synthesis of UDP–ClcNAc/CalNAc, their analogues and<br>GDP–fucose. Nature Protocols, 2010, 5, 636-646.                                                                                                            | 5.5 | 98        |
| 38 | Chemoenzymatic Synthesis of Uridine 5′-Diphospho-2-acetonyl-2-deoxy-α- <scp>d</scp> -glucose as<br>C <sub>2</sub> -Carbon Isostere of UDP-GlcNAc. Journal of Organic Chemistry, 2010, 75, 3492-3494.                                                   | 1.7 | 14        |
| 39 | Highly efficient chemoenzymatic synthesis of β1–3-linked galactosides. Chemical Communications, 2010,<br>46, 7507.                                                                                                                                     | 2.2 | 72        |
| 40 | Substrate specificity of N-acetylhexosamine kinase towards N-acetylgalactosamine derivatives.<br>Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5433-5435.                                                                                      | 1.0 | 41        |
| 41 | Systematic study on the broad nucleotide triphosphate specificity of the pyrophosphorylase domain of the N-acetylglucosamine-1-phosphate uridyltransferase from Escherichia coli K12. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6429-6432. | 1.0 | 14        |
| 42 | A chemoenzymatic route to N-acetylglucosamine-1-phosphate analogues: substrate specificity investigations of N-acetylhexosamine 1-kinase. Chemical Communications, 2009, , 2944.                                                                       | 2.2 | 76        |
| 43 | Enzymatic synthesis of UDP-GlcNAc/UDP-GalNAc analogs using N-acetylglucosamine 1-phosphate uridyltransferase (GlmU). Chemical Communications, 2009, , 6976.                                                                                            | 2.2 | 48        |
| 44 | Studies on the synthesis of neamine-dinucleosides and neamine-PNA conjugates and their interaction with RNA. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5355-5358.                                                                          | 1.0 | 17        |
| 45 | Synthesis of aminodisaccharide–nucleoside conjugates for RNA binding. Tetrahedron, 2007, 63,<br>8135-8144.                                                                                                                                             | 1.0 | 19        |
| 46 | Selective deacetylation using iodine–methanol reagent in fully acetylated nucleosides. Tetrahedron<br>Letters, 2005, 46, 8083-8086.                                                                                                                    | 0.7 | 28        |
| 47 | C2-Carbon Isostere of N-acetylglucosamine as Substrate for Bacterial Polysaccharide Remodeling.                                                                                                                                                        | 0.2 | 0         |