List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5314258/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of rubberised asphalt mixture including natural Zeolite as a warm mix asphalt (WMA) additive. International Journal of Pavement Engineering, 2023, 24, .	4.4	13
2	Behavioural mechanism of SBR, LDPE, and SBS modified bituminous mixtures. Australian Journal of Civil Engineering, 2022, 20, 389-398.	1.6	3
3	Application of Artificial Neural Network Approaches for Predicting Accident Severity on Rural Roads (Case Study: Tehran-Qom and Tehran-Saveh Rural Roads). Mathematical Problems in Engineering, 2022, 2022, 1-14.	1.1	5
4	Rutting performance of road pavement asphalt binders modified by polymers. Proceedings of Institution of Civil Engineers: Construction Materials, 2021, 174, 206-213.	1.1	8
5	Moisture Susceptibility of Asphalt Mixtures: Thermodynamic Evaluation of the Effects of Antistripping Additives. Journal of Materials in Civil Engineering, 2021, 33, .	2.9	29
6	Prediction of load-CMOD curves for HMA mixtures at intermediate temperatures subjected to mixed mode loading. Engineering Fracture Mechanics, 2021, 254, 107937.	4.3	17
7	Laboratory investigation and statistical analysis of the rutting and fatigue resistance of asphalt mixtures containing crumb-rubber and wax-based warm mix asphalt additive. Construction and Building Materials, 2021, 309, 125165.	7.2	15
8	Utilizing of waste polymer modified bitumen in combination with rejuvenator in high reclaimed asphalt pavement mixtures. Construction and Building Materials, 2020, 235, 117516.	7.2	55
9	Production temperatures and mechanical performance of rubberized asphalt mixtures modified with two warm mix asphalt (WMA) additives. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	3.1	22
10	Effect of wax-based warm mix additives on fatigue and rutting performance of crumb rubber modified asphalt. Construction and Building Materials, 2020, 262, 120882.	7.2	28
11	The effect of polybutadiene rubber (PBR) on chemical and rheological properties of the binder including RAP. Construction and Building Materials, 2020, 244, 118320.	7.2	12
12	Chemical Composition and Rheological Characteristics of Binders Containing RAP and Rejuvenator. Journal of Materials in Civil Engineering, 2020, 32, .	2.9	40
13	Experimental Investigation on the Use of Waste Elastomeric Polymers for Bitumen Modification. Applied Sciences (Switzerland), 2020, 10, 2671.	2.5	6
14	Experimental investigation of effect of PP/SBR polymer blends on the moisture resistance and rutting performance of asphalt mixtures. Construction and Building Materials, 2020, 253, 119197.	7.2	23
15	Statistical analysis and accident prediction models leading to pedestrian injuries and deaths on rural roads in Iran. International Journal of Injury Control and Safety Promotion, 2020, 27, 493-509.	2.0	17
16	Application of different modifiers for improvement of chemical characterization and physical-rheological parameters of reclaimed asphalt binder. Construction and Building Materials, 2019, 203, 83-94.	7.2	38
17	Performance evaluation of fatigue resistance of asphalt mixtures modified by SBR/PP polymer blends and SBS. Construction and Building Materials, 2019, 209, 202-214.	7.2	61
18	A Two-Stage Stochastic Model for Maintenance and Rehabilitation Planning of Pavements. Mathematical Problems in Engineering, 2019, 2019, 1-15.	1.1	7

#	Article	IF	CITATIONS
19	Experimental evaluation of fatigue resistance of asphalt mixtures containing waste elastomeric polymers. Construction and Building Materials, 2019, 198, 638-649.	7.2	22
20	Evaluation of fatigue behavior of asphalt binders containing reclaimed asphalt binder using simplified viscoelastic continuum damage approach. Construction and Building Materials, 2019, 202, 374-386.	7.2	23
21	Experimental study to investigate the performance of cold in-place recycling asphalt mixes. Proceedings of the Institution of Civil Engineers: Transport, 2019, 172, 360-370.	0.6	5
22	Investigating the impact of different loading patterns on the permanent deformation behaviour in hot mix asphalt. Construction and Building Materials, 2018, 167, 707-715.	7.2	15
23	Moisture susceptibility evaluation of asphalt mixtures containing Evonik, Zycotherm and hydrated lime. Construction and Building Materials, 2018, 165, 958-965.	7.2	59
24	Evaluation of fatigue behavior of high reclaimed asphalt binder mixes modified with rejuvenator and softer bitumen. Construction and Building Materials, 2018, 191, 702-712.	7.2	39
25	Investigating Effects of Nano/SBR Polymer on Rutting Performance of Binder and Asphalt Mixture. Advances in Materials Science and Engineering, 2018, 2018, 1-7.	1.8	25
26	Rutting Resistance and Fatigue Behavior of Gilsonite-Modified Asphalt Binders. Journal of Materials in Civil Engineering, 2018, 30, .	2.9	54
27	Laboratory Evaluation of Damage Behavior of Warm Mix Asphalt Containing Steel Slag Aggregates. Journal of Materials in Civil Engineering, 2017, 29, .	2.9	33
28	Fatigue performance evaluation of modified asphalt binder using of dissipated energy approach. Construction and Building Materials, 2017, 136, 184-191.	7.2	22
29	Investigation of fatigue life of asphalt mixtures based on the initial dissipated energy approach. Petroleum Science and Technology, 2017, 35, 107-112.	1.5	6
30	Viscoelastic fatigue resistance of asphalt binders modified with crumb rubber and styrene butadiene polymer. Petroleum Science and Technology, 2017, 35, 30-36.	1.5	26
31	Performance properties of devulcanized waste PET modified asphalt mixtures. Petroleum Science and Technology, 2017, 35, 99-104.	1.5	38
32	The rheological behavior of bitumen and moisture susceptibility modified with SBS and nanoclay. Petroleum Science and Technology, 2017, 35, 1085-1090.	1.5	18
33	Evaluation the effects of nanoclay on permanent deformation behavior of stone mastic asphalt mixtures. Construction and Building Materials, 2017, 156, 107-113.	7.2	46
34	Effect of nanoclay on performance of neat and SBS-modified bitumen and HMA. Petroleum Science and Technology, 2016, 34, 1091-1097.	1.5	28
35	Experimental study on the effect of nanosized carbon particles on fatigue resistance of asphalt binders. Petroleum Science and Technology, 2016, 34, 971-975.	1.5	6
36	Effect of nanoclay on fatigue life of hot mix asphalt. Petroleum Science and Technology, 2016, 34, 1021-1025.	1.5	6

#	Article	IF	CITATIONS
37	Investigation of fatigue and fracture properties of asphalt mixtures modified with carbon nanotubes. Fatigue and Fracture of Engineering Materials and Structures, 2016, 39, 896-906.	3.4	124
38	Properties of asphalt modified with devulcanized polyethylene terephthalate. Petroleum Science and Technology, 2016, 34, 1424-1430.	1.5	32
39	Effects of nanoclay on hot mix asphalt performance. Petroleum Science and Technology, 2016, 34, 747-753.	1.5	11
40	A study on fatigue modeling of hot mix asphalt mixtures based on the viscoelastic continuum damage properties of asphalt binder. Construction and Building Materials, 2016, 106, 243-252.	7.2	72
41	Ranking of EVA Modified Bitumens Based on AASHTO M320 Performance Related Parameters. Journal of Testing and Evaluation, 2016, 44, 1706-1715.	0.7	2
42	Laboratory investigation of moisture susceptibility of warm-mix asphalt mixtures containing steel slag aggregates. International Journal of Pavement Engineering, 2015, 16, 745-759.	4.4	45
43	Validation of a simplified method in viscoelastic continuum damage (VECD) model developed for flexural mode of loading. Construction and Building Materials, 2015, 95, 892-897.	7.2	27
44	Effects of copper slag and recycled concrete aggregate on the properties of CIR mixes with bitumen emulsion, rice husk ash, Portland cement and fly ash. Construction and Building Materials, 2015, 96, 172-180.	7.2	105
45	New achievements on positive effects of nanotechnology zyco-soil on rutting resistance and stiffness modulus of glasphalt mix. Construction and Building Materials, 2015, 101, 752-760.	7.2	19
46	Impact of Different Loading Patterns with Short Duration on the Permanent Strain of Asphalt Mixture. Journal of Testing and Evaluation, 2015, 43, 853-866.	0.7	1
47	Comparison of the field measurements of asphalt concrete densities obtained by ground-penetrating radar, pavement quality indicator and the borehole coring methods. Road Materials and Pavement Design, 2014, 15, 759-773.	4.0	16
48	Dynamic Viscoelastic Incremental-Layerwise Finite Element Method for Multilayered Structure Analysis Based on the Relaxation Approach. Journal of Mechanics, 2014, 30, 593-602.	1.4	7
49	Investigating the fatigue endurance limit of HMA mixture using RDEC approach. Construction and Building Materials, 2014, 55, 97-102.	7.2	15
50	Quasi-static analysis of multilayered domains with viscoelastic layer using incremental-layerwise finite element method. Mechanics of Time-Dependent Materials, 2014, 18, 275-291.	4.4	19
51	Evaluation and comparison of flow number calculation methods. Road Materials and Pavement Design, 2014, 15, 182-206.	4.0	27
52	Evaluation of fatigue behavior of hot mix asphalt mixtures prepared by bentonite modified bitumen. Construction and Building Materials, 2014, 68, 685-691.	7.2	48
53	Application of bitumen rheological parameters to predict thermal cracking behavior of polymer modified asphalt mixture. Construction and Building Materials, 2014, 66, 259-267.	7.2	18
54	Laboratory evaluation of strain controlled fatigue criteria in hot mix asphalt. Construction and Building Materials, 2013, 47, 1497-1502.	7.2	20

#	Article	IF	CITATIONS
55	Determination the capacity of two-lane suburban roads with neural networks and effect of speed on level of service. European Transport Research Review, 2013, 5, 179-184.	4.8	8
56	Laboratory evaluation of the effect of nano-organosilane anti-stripping additive on the moisture susceptibility of HMA mixtures under freeze–thaw cycles. Construction and Building Materials, 2013, 48, 1009-1016.	7.2	52
57	Laboratory evaluation of warm mix asphalt mixtures containing electric arc furnace (EAF) steel slag. Construction and Building Materials, 2013, 49, 611-617.	7.2	143
58	Developing a model for estimation of polished stone value (PSV) of road surface aggregates based on petrographic parameters. International Journal of Pavement Engineering, 2013, 14, 242-255.	4.4	15
59	Laboratory evaluation of ethylene vinyl acetate modified bitumens and mixtures based upon performance related parameters. Construction and Building Materials, 2013, 40, 438-447.	7.2	54
60	Investigating effects of ethylene vinyl acetate and gilsonite modifiers upon performance of base bitumen using Superpave tests methodology. Construction and Building Materials, 2012, 36, 1001-1007.	7.2	36
61	Mixed mode fracture resistance of asphalt concrete mixtures. Engineering Fracture Mechanics, 2012, 93, 153-167.	4.3	164
62	Experimental investigation of stone matrix asphalt mixtures containing steel slag. Scientia Iranica, 2012, 19, 1214-1219.	0.4	74
63	Laboratory studies to investigate the properties of CIR mixes containing steel slag as a substitute for virgin aggregates. Construction and Building Materials, 2012, 26, 475-480.	7.2	98
64	Cracked asphalt pavement under traffic loading – A 3D finite element analysis. Engineering Fracture Mechanics, 2011, 78, 1817-1826.	4.3	153
65	Technical study on the Iranian Gilsonite as an additive for modification of asphalt binders used in pavement construction. Construction and Building Materials, 2011, 25, 1379-1387.	7.2	81
66	Formulation of flow number of asphalt mixes using a hybrid computational method. Construction and Building Materials, 2011, 25, 1338-1355.	7.2	158
67	Introducing a modified gradient vector method for optimization of accident prediction non-linear functions. Applied Mathematical Modelling, 2011, 35, 5500-5506.	4.2	5
68	Evaluation and Performance of Hydrated Lime and Limestone Powder in Porous Asphalt. Road Materials and Pavement Design, 2008, 9, 651-664.	4.0	25
69	Evaluation and Performance of Hydrated Lime and Limestone Powder in Porous Asphalt. Road Materials and Pavement Design, 2008, 9, 651-664.	4.0	2