## Mattias Thuvander

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5314053/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                       | IF       | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|
| 1  | Microstructures and hardness of as-quenched martensites (0.1–0.5%C). Acta Materialia, 2011, 59, 5845-5858.                                                                                                                                                    | 3.8      | 321       |
| 2  | Quantitative atom probe analysis of carbides. Ultramicroscopy, 2011, 111, 604-608.                                                                                                                                                                            | 0.8      | 148       |
| 3  | An improved thermodynamic modeling of the Fe–Cr system down to zero kelvin coupled with key<br>experiments. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2011, 35, 355-366.                                                              | 0.7      | 141       |
| 4  | Microstructure, Solidification Texture, and Thermal Stability of 316 L Stainless Steel Manufactured by<br>Laser Powder Bed Fusion. Metals, 2018, 8, 643.                                                                                                      | 1.0      | 117       |
| 5  | Quantitative Evaluation of Spinodal Decomposition in Fe-Cr by Atom Probe Tomography and Radial Distribution Function Analysis. Microscopy and Microanalysis, 2013, 19, 665-675.                                                                               | 0.2      | 96        |
| 6  | Thermal stability of electrodeposited nanocrystalline nickel and iron–nickel alloys. Materials Science and Technology, 2001, 17, 961-970.                                                                                                                     | 0.8      | 87        |
| 7  | Microstructural stability of Fe–Cr–Al alloys at 450–550 °C. Journal of Nuclear Materials, 2015, 457,<br>291-297.                                                                                                                                              | 1.3      | 81        |
| 8  | Hydrogen analysis in APT: Methods to control adsorption and dissociation of H2. Ultramicroscopy, 2013, 132, 285-289.                                                                                                                                          | 0.8      | 65        |
| 9  | Martensitic transformations in Ti-6Al-4V (ELI) alloy manufactured by 3D Printing. Materials<br>Characterization, 2018, 146, 101-112.                                                                                                                          | 1.9      | 64        |
| 10 | Spinodal decomposition of Ti0.33Al0.67N thin films studied by atom probe tomography. Thin Solid<br>Films, 2012, 520, 4362-4368.                                                                                                                               | 0.8      | 63        |
| 11 | Redistribution of alloying elements in Zircaloy-2 after in-reactor exposure. Journal of Nuclear<br>Materials, 2014, 454, 178-185.                                                                                                                             | 1.3      | 60        |
| 12 | Concurrent phase separation and clustering in the ferrite phase during low temperature stress aging of duplex stainless steel weldments. Acta Materialia, 2012, 60, 5818-5827.                                                                                | 3.8      | 58        |
| 13 | The 475°C embrittlement in Fe–20Cr and Fe–20Cr–X (X=Ni, Cu, Mn) alloys studied by mechanical testing<br>and atom probe tomography. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2013, 574, 123-129. | g<br>2.6 | 55        |
| 14 | Nanostructure evolution and mechanical property changes during aging of a super duplex stainless<br>steel at 300 ŰC. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2015, 647, 241-248.               | 2.6      | 51        |
| 15 | Direct observation of hydrogen and deuterium in oxide grain boundaries in corroded Zirconium alloys. Corrosion Science, 2015, 90, 1-4.                                                                                                                        | 3.0      | 49        |
| 16 | The bone-implant interface of dental implants in humans on the atomic scale. Acta Biomaterialia, 2017,<br>48, 445-450.                                                                                                                                        | 4.1      | 46        |
| 17 | Insight into hydrothermal aging effect on Pd sites over Pd/LTA and Pd/SSZ-13 as PNA and CO oxidation monolith catalysts. Applied Catalysis B: Environmental, 2020, 278, 119315.                                                                               | 10.8     | 45        |
| 18 | Barrier oxide chemistry and hydrogen pick-up mechanisms in zirconium alloys. Corrosion Science, 2016, 102, 490-502.                                                                                                                                           | 3.0      | 44        |

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Enrichment of Fe and Ni at metal and oxide grain boundaries in corroded Zircaloy-2. Corrosion Science, 2012, 65, 10-12.                                                                                             | 3.0 | 41        |
| 20 | Atomically Resolved Tissue Integration. Nano Letters, 2014, 14, 4220-4223.                                                                                                                                          | 4.5 | 41        |
| 21 | Atom Probe Tomography of Oxide Scales. Oxidation of Metals, 2013, 79, 227-238.                                                                                                                                      | 1.0 | 40        |
| 22 | Electron backscattering diffraction study of coalesced bainite in high strength steel weld metals.<br>Materials Science and Technology, 2008, 24, 1183-1188.                                                        | 0.8 | 37        |
| 23 | Quantitative APT analysis of Ti(C,N). Ultramicroscopy, 2011, 111, 609-614.                                                                                                                                          | 0.8 | 37        |
| 24 | Evolution of precipitation in reactor pressure vessel steel welds under neutron irradiation. Journal of Nuclear Materials, 2017, 488, 222-230.                                                                      | 1.3 | 37        |
| 25 | Microstructure of a boron containing high purity nickel-based alloy 690. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 281, 96-103.                  | 2.6 | 35        |
| 26 | APFIM Studies of Grain and Phase Boundaries. Materials Characterization, 2000, 44, 87-100.                                                                                                                          | 1.9 | 33        |
| 27 | Three-dimensional analysis of coalesced bainite using focused ion beam tomography. Materials<br>Characterization, 2008, 59, 877-882.                                                                                | 1.9 | 33        |
| 28 | Reduction of multiple hits in atom probe tomography. Ultramicroscopy, 2013, 132, 81-85.                                                                                                                             | 0.8 | 33        |
| 29 | Atom Probe Tomography Interlaboratory Study on Clustering Analysis in Experimental Data Using the Maximum Separation Distance Approach. Microscopy and Microanalysis, 2019, 25, 356-366.                            | 0.2 | 32        |
| 30 | Tool wear mechanisms of PcBN in machining Inconel 718: Analysis across multiple length scale. CIRP<br>Annals - Manufacturing Technology, 2021, 70, 73-78.                                                           | 1.7 | 31        |
| 31 | Initial clustering – a key factor for phase separation kinetics in Fe–Cr-based alloys. Scripta Materialia,<br>2014, 75, 62-65.                                                                                      | 2.6 | 30        |
| 32 | Effect of cooling rate after solution treatment on subsequent phase separation during aging of Fe-Cr<br>alloys: A small-angle neutron scattering study. Acta Materialia, 2017, 134, 221-229.                        | 3.8 | 29        |
| 33 | Atom probe tomography investigation of lath boundary segregation and precipitation in a maraging stainless steel. Ultramicroscopy, 2013, 132, 265-270.                                                              | 0.8 | 28        |
| 34 | Atomic-scale investigation of carbon atom migration in surface induced white layers in high-carbon medium chromium (AISI 52100) bearing steel. Acta Materialia, 2017, 130, 155-163.                                 | 3.8 | 27        |
| 35 | THERMAL STABILITY OF ELECTRODEPOSITED NANOCRYSTALLINE NICKEL. Surface Engineering, 2002, 18, 151-156.                                                                                                               | 1.1 | 26        |
| 36 | Structural Characterization of Phase Separation in Fe-Cr: A Current Comparison of Experimental Methods. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5942-5952. | 1.1 | 25        |

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Tin clustering and precipitation in the oxide during autoclave corrosion of Zircaloy-2. Journal of Nuclear Materials, 2015, 456, 409-414.                                                                    | 1.3 | 23        |
| 38 | Alkali Dispersion in (Ag,Cu)(In,Ga)Se <sub>2</sub> Thin Film Solar Cells—Insight from Theory and Experiment. ACS Applied Materials & Interfaces, 2021, 13, 7188-7199.                                        | 4.0 | 22        |
| 39 | A statistical method to detect ordering and phase separation by APFIM. Ultramicroscopy, 1998, 73, 279-285.                                                                                                   | 0.8 | 21        |
| 40 | Grain boundary segregation during heat treatment at 600°C in a model Alloy 600. Materials Science<br>& Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 270, 38-43.     | 2.6 | 21        |
| 41 | Cluster formation in in-service thermally aged pressurizer welds. Journal of Nuclear Materials, 2018, 504, 23-28.                                                                                            | 1.3 | 21        |
| 42 | Precipitation process of martensitic PH stainless steel Nanoflex. Materials Science and Technology, 2012, 28, 695-701.                                                                                       | 0.8 | 20        |
| 43 | Early stages of spinodal decomposition in Fe–Cr resolved by in-situ small-angle neutron scattering.<br>Applied Physics Letters, 2015, 106, 061911.                                                           | 1.5 | 20        |
| 44 | Spinodal Decomposition in Functionally Graded Super Duplex Stainless Steel and Weld Metal.<br>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49,<br>2803-2816. | 1.1 | 20        |
| 45 | Methods of quantitative matrix analysis of Zircaloy-2. Ultramicroscopy, 2011, 111, 711-714.                                                                                                                  | 0.8 | 19        |
| 46 | Characterization of as-deposited cold sprayed Cr-coating on Optimized ZIRLOâ,,¢ claddings. Journal of<br>Nuclear Materials, 2021, 549, 152892.                                                               | 1.3 | 19        |
| 47 | Blind deconvolution of time-of-flight mass spectra from atom probe tomography. Ultramicroscopy, 2013, 132, 60-64.                                                                                            | 0.8 | 18        |
| 48 | On the Analysis of Clustering in an Irradiated Low Alloy Reactor Pressure Vessel Steel Weld.<br>Microscopy and Microanalysis, 2017, 23, 376-384.                                                             | 0.2 | 18        |
| 49 | Direct atom probe tomography observations of concentration fluctuations in Fe–Cr solid solution.<br>Scripta Materialia, 2015, 98, 13-15.                                                                     | 2.6 | 17        |
| 50 | Effect of solution treatment on spinodal decomposition during aging of an Fe-46.5 at.% Cr alloy.<br>Journal of Materials Science, 2017, 52, 326-335.                                                         | 1.7 | 17        |
| 51 | Atom probe analysis of carbonitride grains in (Ti, W, Ta, Mo)(C, N) () cermets with different carbon<br>content. Applied Surface Science, 1996, 94-95, 351-355.                                              | 3.1 | 15        |
| 52 | Microstructural evolution of Fe 22%Cr model alloy under thermal ageing and ion irradiation conditions studied by atom probe tomography. Journal of Nuclear Materials, 2016, 477, 172-177.                    | 1.3 | 15        |
| 53 | Fe and Cr phase separation in super and hyper duplex stainless steel plates and welds after very short aging times. Materials and Design, 2021, 210, 110055.                                                 | 3.3 | 15        |
| 54 | Three-dimensional atomic scale analysis of nanostructured materials. Micron, 2001, 32, 731-739.                                                                                                              | 1.1 | 14        |

| #  | Article                                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Effect of welding procedure on texture and strength of nickel based weld metal. Science and<br>Technology of Welding and Joining, 2007, 12, 549-555.                                                                                                                                          | 1.5 | 14        |
| 56 | Atom probe tomography of interfaces in ceramic films and oxide scales. MRS Bulletin, 2016, 41, 35-39.                                                                                                                                                                                         | 1.7 | 14        |
| 57 | Improving Compositional Accuracy in APT Analysis of Carbides Using a Decreased Detection Efficiency.<br>Microscopy and Microanalysis, 2019, 25, 454-461.                                                                                                                                      | 0.2 | 14        |
| 58 | Elemental Distribution in CrNbTaTiW-C High Entropy Alloy Thin Films. Microscopy and Microanalysis, 2019, 25, 489-500.                                                                                                                                                                         | 0.2 | 14        |
| 59 | Cold sprayed Cr-coating on Optimized ZIRLOâ,,¢ claddings: the Cr/Zr interface and its microstructural and chemical evolution after autoclave corrosion testing. Journal of Nuclear Materials, 2022, 560, 153505.                                                                              | 1.3 | 13        |
| 60 | Effect of Ti on Evolution of Microstructure and Hardness of Martensitic Fe–C–Mn Steel during<br>Tempering. ISIJ International, 2014, 54, 2890-2899.                                                                                                                                           | 0.6 | 12        |
| 61 | Microstructural Characterization of Sulfurization Effects in Cu(In,Ga)Se <sub>2</sub> Thin Film Solar Cells. Microscopy and Microanalysis, 2019, 25, 532-538.                                                                                                                                 | 0.2 | 12        |
| 62 | Evolution of grain boundary chemistry in a Ni–17Cr–9Fe model alloy. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 250, 93-98.                                                                                                  | 2.6 | 11        |
| 63 | A Round Robin Experiment: Analysis of Solute Clustering from Atom Probe Tomography Data<br>Microscopy and Microanalysis, 2016, 22, 666-667.                                                                                                                                                   | 0.2 | 11        |
| 64 | Influence of heat treatment under hot isostatic pressing (HIP) on microstructure of<br>intermetallic-reinforced tool steel manufactured by laser powder bed fusion. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138699. | 2.6 | 11        |
| 65 | The Effect of Hf Addition on the Boronizing and Siliciding Behavior of CoCrFeNi High Entropy Alloys.<br>Materials, 2022, 15, 2282.                                                                                                                                                            | 1.3 | 11        |
| 66 | The potential of spinodal ferrite decomposition for increasing the very high cycle fatigue strength of duplex stainless steel. International Journal of Fatigue, 2016, 93, 363-371.                                                                                                           | 2.8 | 10        |
| 67 | Self-organized nanostructuring in Zr0.69Al0.31N thin films studied by atom probe tomography. Thin Solid Films, 2016, 615, 233-238.                                                                                                                                                            | 0.8 | 10        |
| 68 | Atom probe tomography field evaporation characteristics and compositional corrections of ZrB2.<br>Materials Characterization, 2019, 156, 109871.                                                                                                                                              | 1.9 | 10        |
| 69 | Detailed Analysis of the Microstructure of the Metal/Oxide Interface Region in Zircaloy-2 after<br>Autoclave Corrosion Testing. Journal of ASTM International, 2011, 8, 1-16.                                                                                                                 | 0.2 | 10        |
| 70 | Structure and chemistry of grain boundaries in Niâ^'16Crâ^'9Fe model materials. Applied Surface Science,<br>1995, 87-88, 251-256.                                                                                                                                                             | 3.1 | 9         |
| 71 | Grain boundary precipitation and segregation in Niî—,16Crî—,9Fe model materials. Applied Surface Science,<br>1996, 94-95, 343-350.                                                                                                                                                            | 3.1 | 9         |
| 72 | Microstructural Characterisation of As-Deposited and Reheated Weld Metal — High Strength Steel<br>Weld Metals. Welding in the World, Le Soudage Dans Le Monde, 2007, 51, 44-49.                                                                                                               | 1.3 | 9         |

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Direct observation of doping incorporation pathways in self-catalytic GaMnAs nanowires. Journal of Applied Physics, 2015, 118, .                                                                                                                | 1.1 | 9         |
| 74 | A Comparison between Ultra-high-strength and Conventional High-strength Fastener Steels:<br>Mechanical Properties at Elevated Temperature and Microstructural Mechanisms. ISIJ International,<br>2016, 56, 1874-1883.                           | 0.6 | 9         |
| 75 | Oxide evolution on Alloy X-750 in simulated BWR environment. Journal of Nuclear Materials, 2016, 482, 19-27.                                                                                                                                    | 1.3 | 9         |
| 76 | Corrosion of pre-oxidized nickel alloy X-750 in simulated BWR environment. Journal of Nuclear<br>Materials, 2017, 486, 350-360.                                                                                                                 | 1.3 | 9         |
| 77 | Multiple Influences of Molybdenum on the Precipitation Process in a Martensitic PH Stainless Steel.<br>Metals, 2019, 9, 1118.                                                                                                                   | 1.0 | 9         |
| 78 | An atom probe tomography study of the chemistry of radiation-induced dislocation loops in<br>Zircaloy-2 exposed to boiling water reactor operation. Journal of Nuclear Materials, 2021, 550, 152923.                                            | 1.3 | 9         |
| 79 | Oxidation Mechanism in Zircaloy-2—The Effect of SPP Size Distribution. , 2015, , 373-403.                                                                                                                                                       |     | 9         |
| 80 | An APT investigation of an amorphous Cr–B–C thin film. Ultramicroscopy, 2015, 159, 217-222.                                                                                                                                                     | 0.8 | 8         |
| 81 | Influence of heat treatment on grain boundary microstructure in a Ni–16Cr–10Fe–0·022C model<br>material. Materials Science and Technology, 1999, 15, 237-245.                                                                                   | 0.8 | 7         |
| 82 | Modelling the Evolution of Multiple Hardening Mechanisms during Tempering of Fe–C–Mn–Ti<br>Martensite. ISIJ International, 2015, 55, 884-893.                                                                                                   | 0.6 | 7         |
| 83 | Complete precipitate dissolution during adiabatic shear localisation in a Ni-based superalloy.<br>Philosophical Magazine Letters, 2020, 100, 561-570.                                                                                           | 0.5 | 7         |
| 84 | Electric-field-controlled reversible order-disorder switching of a metal tip surface. Physical Review<br>Materials, 2018, 2, .                                                                                                                  | 0.9 | 7         |
| 85 | Precipitation kinetics of Cu-rich particles in super duplex stainless steels. Journal of Materials<br>Research and Technology, 2021, 15, 3951-3964.                                                                                             | 2.6 | 7         |
| 86 | Atom probe tomography of a Ti–Si–Al–C–N coating grown on a cemented carbide substrate.<br>Ultramicroscopy, 2015, 159, 308-313.                                                                                                                  | 0.8 | 6         |
| 87 | Effect of Tempering on the Bainitic Microstructure Evolution Correlated with the Hardness in a<br>Low-Alloy Medium-Carbon Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and<br>Materials Science, 2020, 51, 6470-6481. | 1.1 | 6         |
| 88 | Precipitation of γ' during cooling of nickel-base superalloy Haynes 282. Philosophical Magazine Letters, 2021, 101, 30-39.                                                                                                                      | 0.5 | 6         |
| 89 | Integrated effect of thermal ageing and low flux irradiation on microstructural evolution of the ferrite of welded austenitic stainless steels. Journal of Nuclear Materials, 2021, 551, 152967.                                                | 1.3 | 6         |
| 90 | Nanoscale phase separations in as-fabricated thick super duplex stainless steels. Journal of Materials Science, 2021, 56, 12475-12485.                                                                                                          | 1.7 | 5         |

| #   | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Analysis of thermal embrittlement of a low alloy steel weldment using fracture toughness and microstructural investigations. Engineering Fracture Mechanics, 2022, 262, 108248.                             | 2.0 | 5         |
| 92  | Carbide Precipitation in a Low Alloyed Steel during Aging Studied by Atom Probe Tomography and Thermodynamic Modeling. Metals, 2021, 11, 2009.                                                              | 1.0 | 5         |
| 93  | Observations of copper clustering in a 25Cr-7Ni super duplex stainless steel during low-temperature aging under load. Philosophical Magazine Letters, 0, , 1-8.                                             | 0.5 | 4         |
| 94  | Controlling In–Ga–Zn–O thin films transport properties through density changes. Thin Solid Films, 2016, 608, 57-61.                                                                                         | 0.8 | 4         |
| 95  | Resolving mass spectral overlaps in atom probe tomography by isotopic substitutions – case of TiSi15N. Ultramicroscopy, 2018, 184, 51-60.                                                                   | 0.8 | 4         |
| 96  | Dynamic Impurity Redistributions in Kesterite Absorbers. Physica Status Solidi (B): Basic Research, 2020, 257, 2000062.                                                                                     | 0.7 | 4         |
| 97  | On the Use of Density-Based Algorithms for the Analysis of Solute Clustering in Atom Probe<br>Tomography Data. Minerals, Metals and Materials Series, 2019, , 2097-2113.                                    | 0.3 | 4         |
| 98  | Nanoscale chemistry of Zircaloy-2 exposed to three and nine annual cycles of boiling water reactor operation — an atom probe tomography study. Journal of Nuclear Materials, 2022, 561, 153537.             | 1.3 | 4         |
| 99  | Carbide Precipitation during Processing of Two Low-Alloyed Martensitic Tool Steels with 0.11 and 0.17 V/Mo Ratios Studied by Neutron Scattering, Electron Microscopy and Atom Probe. Metals, 2022, 12, 758. | 1.0 | 4         |
| 100 | On the Accuracy of Compositional Quantification for Atom Probe Tomography. Microscopy and Microanalysis, 2016, 22, 642-643.                                                                                 | 0.2 | 3         |
| 101 | Early Precipitation Stages of Sigma Phase in Alloy 28 Studied with Scanning Electron Microscopy and Atom Probe Tomography. ISIJ International, 2021, 61, 881-887.                                           | 0.6 | 3         |
| 102 | Toward a Comprehensive Mechanistic Understanding of Hydrogen Uptake in Zirconium Alloys by<br>Combining Atom Probe Analysis With Electronic Structure Calculations. , 2015, , 515-539.                      |     | 3         |
| 103 | Detailed Analysis of the Microstructure of the Metal/Oxide Interface Region in Zircaloy-2 after Autoclave Corrosion Testing. , 2011, , 595-619.                                                             |     | 3         |
| 104 | The Effect of Iron on Dislocation Evolution in Model and Commercial Zirconium Alloys. , 2018, ,<br>796-822.                                                                                                 |     | 3         |
| 105 | Electric Field-Induced Surface Melting of Gold Observed In Situ at Room Temperature and at Atomic Resolution Using TEM. Microscopy and Microanalysis, 2019, 25, 1830-1831.                                  | 0.2 | 2         |
| 106 | The Nanostructure of the Oxide Formed on Fe–10Cr–4Al Exposed in Liquid Pb. Microscopy and Microanalysis, 2022, 28, 1321-1334.                                                                               | 0.2 | 2         |
| 107 | 3D Analysis of Phase Separation in Ferritic Stainless Steels. , 2012, , 221-226.                                                                                                                            |     | 2         |
| 108 | Detailed Analysis of the Microstructure of the Metal/Oxide Interface Region in Zircaloy-2 after                                                                                                             |     | 2         |

<sup>8</sup> Autoclave Corrosion Testing. , 2012, , 595-619.

| #   | Article                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Post-irradiation annealing of high flux irradiated and surveillance material reactor pressure vessel weld metal. Journal of Nuclear Materials, 2022, 562, 153586.                   | 1.3 | 2         |
| 110 | EBSD Analysis of Blocky Structures in Hardened and Tempered Microstructures of a 5 wt.% Cr Cold<br>Work Tool Steel. Metallography, Microstructure, and Analysis, 2021, 10, 862-875. | 0.5 | 2         |
| 111 | Detailed Analysis of the Microstructure of the Metal/Oxide Interface Region in Zircaloy-2 after Autoclave Corrosion Testing. , 2012, , 595-619.                                     |     | 1         |
| 112 | Atom probe tomography characterisation of powder forged connecting rods alloyed with vanadium and copper. Philosophical Magazine, 2022, 102, 2056-2073.                             | 0.7 | 1         |
| 113 | On APFIM of Grain Boundaries in a Nickel Base Superalloy. European Physical Journal Special Topics, 1996, 06, C5-247-C5-252.                                                        | 0.2 | 0         |
| 114 | Apfim Investigation of Segregation in a Nickel Base Alloy. Microscopy and Microanalysis, 1998, 4, 118-119.                                                                          | 0.2 | 0         |
| 115 | Towards quantitative three-dimensional characterisation of buried InAs quantum dots. Journal of<br>Physics: Conference Series, 2011, 326, 012046.                                   | 0.3 | 0         |
| 116 | Atom Probe Tomography of Oxidised Grain Boundaries in Highly Irradiated SS316. Microscopy and Microanalysis, 2019, 25, 2532-2533.                                                   | 0.2 | 0         |
| 117 | 3D Analysis of Phase Separation in Ferritic Stainless Steels. , 0, , 221-226.                                                                                                       |     | 0         |
| 118 | Microstructural Evolution of Welded Stainless Steels on Integrated Effect of Thermal Aging and Low<br>Flux Irradiation. Minerals, Metals and Materials Series, 2019, , 1919-1926.   | 0.3 | 0         |
| 119 | On the Effect of Preoxidation of Nickel Alloy X-750. Minerals, Metals and Materials Series, 2018, , 407-416.                                                                        | 0.3 | 0         |
| 120 | Microstructural Evolution of Welded Stainless Steels on Integrated Effect of Thermal Aging and Low<br>Flux Irradiation. Minerals, Metals and Materials Series, 2018, , 703-710.     | 0.3 | 0         |
| 121 | On the Use of Density-Based Algorithms for the Analysis of Solute Clustering in Atom Probe Tomography Data. Minerals, Metals and Materials Series, 2018, , 881-897.                 | 0.3 | 0         |
| 122 | Effect of the thorium oxide content on the leaching of a mixed thorium-uranium oxide fuel. Journal of Radioanalytical and Nuclear Chemistry, 0, , .                                 | 0.7 | 0         |