
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5314001/publications.pdf Version: 2024-02-01

KEI ISHIDA

#	Article	IF	CITATIONS
1	Future climate change impact assessment of watershed scale hydrologic processes in Peninsular Malaysia by a regional climate model coupled with a physically-based hydrology modelo. Science of the Total Environment, 2017, 575, 12-22.	3.9	67
2	Physically Based Estimation of Maximum Precipitation over Three Watersheds in Northern California: Atmospheric Boundary Condition Shifting. Journal of Hydrologic Engineering - ASCE, 2015, 20, .	0.8	46
3	Long-term trend analysis on total and extreme precipitation over Shasta Dam watershed. Science of the Total Environment, 2018, 626, 244-254.	3.9	46
4	Assessing the impacts of future climate change on the hydroclimatology of the Gediz Basin in Turkey by using dynamically downscaled CMIP5 projections. Science of the Total Environment, 2019, 648, 481-499.	3.9	46
5	Physically Based Estimation of Maximum Precipitation over Three Watersheds in Northern California: Relative Humidity Maximization Method. Journal of Hydrologic Engineering - ASCE, 2015, 20, .	0.8	36
6	Assessment of 21st century drought conditions at Shasta Dam based on dynamically projected water supply conditions by a regional climate model coupled with a physically-based hydrology model. Science of the Total Environment, 2017, 586, 197-205.	3.9	35
7	Trend analysis of watershed-scale precipitation over Northern California by means of dynamically-downscaled CMIP5 future climate projections. Science of the Total Environment, 2017, 592, 12-24.	3.9	30
8	New Methodology to Develop Future Flood Frequency under Changing Climate by Means of Physically Based Numerical Atmospheric-Hydrologic Modeling. Journal of Hydrologic Engineering - ASCE, 2016, 21, 04016001.	0.8	24
9	Impact of air temperature on physically-based maximum precipitation estimation through change in moisture holding capacity of air. Journal of Hydrology, 2018, 556, 1050-1063.	2.3	23
10	Integrating global land-cover and soil datasets to update saturated hydraulic conductivity parameterization in hydrologic modeling. Science of the Total Environment, 2018, 631-632, 279-288.	3.9	22
11	Capabilities of deep learning models on learning physical relationships: Case of rainfall-runoff modeling with LSTM. Science of the Total Environment, 2022, 802, 149876.	3.9	21
12	Coupling hydroclimate-hydraulic-sedimentation models to estimate flood inundation and sediment transport during extreme flood events under a changing climate. Science of the Total Environment, 2020, 740, 140117.	3.9	20
13	Hourly-scale coastal sea level modeling in a changing climate using long short-term memory neural network. Science of the Total Environment, 2020, 720, 137613.	3.9	20
14	Statistical analyses and modeling approaches to hydrodynamic characteristics in alluvial aquifer. Hydrological Processes, 2013, 27, 4017-4027.	1.1	17
15	A Performance Evaluation of Dynamical Downscaling of Precipitation over Northern California. Sustainability, 2017, 9, 1457.	1.6	15
16	Reconstruction of Historical Inflows into and Water Supply from Shasta Dam by Coupling Physically Based Hydroclimate Model with Reservoir Operation Model. Journal of Hydrologic Engineering - ASCE, 2016, 21, .	0.8	14
17	Characterization of Extreme Storm Events Using a Numerical Model–Based Precipitation Maximization Procedure in the Feather, Yuba, and American River Watersheds in California. Journal of Hydrometeorology, 2017, 18, 1413-1423.	0.7	14
18	Analysis of future climate change impacts on snow distribution over mountainous watersheds in Northern California by means of a physically-based snow distribution model. Science of the Total Environment, 2018, 645, 1065-1082.	3.9	13

#	Article	IF	CITATIONS
19	Impacts of climate change on snow accumulation and melting processes over mountainous regions in Northern California during the 21st century. Science of the Total Environment, 2019, 685, 104-115.	3.9	13
20	Current issues in and an emerging method for flood frequency analysis under changing climate. Hydrological Research Letters, 2017, 11, 1-5.	0.3	11
21	Impacts of Climate Change on the Hydro-Climate of Peninsular Malaysia. Water (Switzerland), 2019, 11, 1798.	1.2	11
22	Comparison of Performance on Watershed-Scale Precipitation between WRF and MM5. , 2015, , .		10
23	Role of Snowmelt in Determining whether the Maximum Precipitation Always Results in the Maximum Flood. Journal of Hydrologic Engineering - ASCE, 2016, 21, .	0.8	10
24	Dynamical downscaling of global reanalysis data for high-resolution spatial modeling of snow accumulation/melting at the central/southern Sierra Nevada watersheds. Journal of Hydrology, 2021, 598, 126445.	2.3	9
25	Physically based maximum precipitation estimation under future climate change conditions. Hydrological Processes, 2018, 32, 3188-3201.	1.1	8
26	A stochastic model for behaviour of fish ascending an agricultural drainage system. Paddy and Water Environment, 2010, 8, 105-111.	1.0	7
27	Application of shallow water equations to analyze runoff processes in hilly farmlands. Paddy and Water Environment, 2011, 9, 393-401.	1.0	7
28	Projected 21st century climate change on snow conditions over Shasta Dam watershed by means of dynamical downscaling. Hydrological Processes, 2017, 31, 2887-2901.	1.1	7
29	Climate change analysis on historical watershedâ€scale precipitation by means of longâ€ŧerm dynamical downscaling. Hydrological Processes, 2017, 31, 35-50.	1.1	6
30	Sensitivity analysis of convective parameterizations of a regional climate model in higher-resolution domains for long-term precipitation reconstruction. Journal of Water and Climate Change, 2020, 11, 1467-1480.	1.2	6
31	Application of One-Dimensional Shallow Water Model to Flows in Open Channels with Bends. Journal of Rainwater Catchment Systems, 2012, 17, 15-23.	0.2	5
32	Hybrid precipitation downscaling over coastal watersheds in Japan using WRF and CNN. Journal of Hydrology: Regional Studies, 2021, 37, 100921.	1.0	5
33	Dynamically Downscaled CMIP5 Climate Projections over a Mediterranean-Climate Watershed in Western Turkey. , 2017, , .		4
34	Trend analysis of watershed-scale annual and seasonal precipitation in Northern California based on dynamically downscaled future climate projections. Journal of Water and Climate Change, 2020, 11, 86-105.	1.2	4
35	A hydro-environmental watershed model improved in canal-aquifer water exchange process. Paddy and Water Environment, 2011, 9, 425.	1.0	3
36	Hydrologic Impact Assessment by a Physically-Based Hydro-Climate Model of Regional Climate Change		3

for the Water Resources of the Upper Ping River Basin of Thailand. , 2015, , .

#	Article	IF	CITATIONS
37	Regional Hydrologic Impact Assessment of Climate Change on Reservoir Inflows under the CMIP5 Climate Projections. , 2017, , .		3
38	Climate Change Trend Analysis on Extreme Precipitation over the Shasta Dam Watershed Based on 159-Year Long-Term Dynamic Downscaling. , 2017, , .		2
39	Maximum Precipitation Estimation for Five Watersheds in the Southern Sierra Nevada. , 2017, , .		2
40	Surface Water Temperature Predictions at a Mid-Latitude Reservoir under Long-Term Climate Change Impacts Using a Deep Neural Network Coupled with a Transfer Learning Approach. Water (Switzerland), 2021, 13, 1109.	1.2	2
41	Multi-time-scale input approaches for hourly-scale rainfall–runoff modeling based on recurrent neural networks. Journal of Hydroinformatics, 0, , .	1.1	2
42	Reconstruction of groundwater level at Kumamoto, Japan by means of deep learning to evaluate its increase by the 2016 earthquake. IOP Conference Series: Earth and Environmental Science, 2021, 851, 012032.	0.2	2
43	A 2-D and 3-D Composite Dimensional Fully Coupled Surface and Subsurface Flow Model. Journal of Rainwater Catchment Systems, 2012, 17, 1-13.	0.2	1
44	Climate Change Analysis on Extreme Precipitation over Three Watersheds in Northern California Based on 137-Year Long-Term Dynamical Downscaling. , 2015, , .		1
45	Analysis of Precipitation Using Fine-Scale Dynamical Downscaling over a Sparsely-Gauged Small Watershed. , 2015, , .		1
46	Maximum Precipitation Estimation over Shasta Dam Watershed by Means of Atmospheric Boundary Condition Shifting Method. , 2017, , .		1
47	Maximum Precipitation Estimation over American River Watershed in Northern California under Future Climate Conditions. , 2017, , .		1
48	Climate change analysis on historical watershed-scale precipitation by means of long-term dynamical downscaling. , 2017, 31, 35.		1
49	Projected 21st century climate change on snow conditions over Shasta Dam watershed by means of dynamical downscaling. , 2017, 31, 2887.		1
50	Assessment of 21st century drought conditions at Shasta Dam based on dynamically projected water supply conditions by a regional climate model coupled with a physically-based hydrology model. , 2017, 586, 197-197.		1
51	Physically Based Maximization of Precipitation over American River Watershed in California. , 2013, , .		1
52	Statistical and Physical Analysis of Intense Precipitation over Northern Kyushu on July 5, 2017. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2018, 74, I_337-I_342.	0.0	1
53	How Realistic Are the GCM Climate Projections in Simulating the Recent Past over Northern California?. , 2013, , .		0
54	Assessment of Change in Precipitation Frequency under Future Climate Change Conditions. , 2014, , .		0

#	Article	IF	CITATIONS
55	Historical Climatic and Hydrologic Modeling over a Watershed at Peninsular Malaysia. , 2015, , .		0
56	Application of Dynamical Downscaling Technique to the Reconstruction of Hydro-Climate Data over Shasta Dam Watershed. , 2015, , .		0
57	Impacts of Land-Cover on Hydrology: Adjusting the Saturated Hydraulic Conductivity in a Physically-Based Model by Integrating Land Cover into Soil Data. , 2016, , .		0
58	Dynamically Downscaled Precipitation over Northern California Based on CMIP5 Future Climate Projections. , 2017, , .		0
59	Assessment Study of 21st Century Drought Conditions at Shasta Dam Based on Dynamically Projected Water Supply and Water Demand. , 2017, , .		0
60	Analysis of Reservoir Operation under the Uncertainties of Future Projections Based on Fine-Scale Dynamical Downscaling over a Sparsely-Gauged Small Watershed. , 2017, , .		0
61	Reconstruction of Historical Watershed-Scale Precipitation over Ishikari River Basin, Japan, by Means of Dynamical Downscaling. , 2018, , .		0
62	Effects of the spatial and temporal resolution of meteorological data on the accuracy of precipitation estimation by means of CNN. IOP Conference Series: Earth and Environmental Science, 2021, 851, 012033.	0.2	0
63	Effects of Climate Change on the Stream Flows in Upper Middle Fork Feather River Watershed and on the Groundwater Stresses in Sierra Valley Aquifer Based on Long-Term Dynamical Downscaling. , 2017, , .		0
64	Effect of Surface Hydrophilicity of Symmetric Polytetrafluoroethylene Flat-sheet Membranes on Membrane Fouling in a Submerged Membrane Bioreactor. Japanese Journal of Water Treatment Biology, 2021, 57, 79-89.	0.2	0
65	Mechanical Durability and Fouling Development of Flat-sheet Membranes in a Submerged Membrane Bioreactor. Japanese Journal of Water Treatment Biology, 2022, 58, 71-81.	0.2	0