Thomas A Richards

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5313580/publications.pdf

Version: 2024-02-01

105 papers 9,921 citations

41344 49 h-index 94 g-index

114 all docs

114 docs citations

times ranked

114

10882 citing authors

#	Article	IF	CITATIONS
1	Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Molecular Ecology, 2010, 19, 21-31.	3.9	1,229
2	Patterns of Rare and Abundant Marine Microbial Eukaryotes. Current Biology, 2014, 24, 813-821.	3.9	450
3	Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature, 2013, 499, 209-213.	27.8	448
4	Myosin domain evolution and the primary divergence of eukaryotes. Nature, 2005, 436, 1113-1118.	27.8	393
5	Discovery of novel intermediate forms redefines the fungal tree of life. Nature, 2011, 474, 200-203.	27.8	393
6	Marine protist diversity in <scp>E</scp> uropean coastal waters and sediments as revealed by highâ€throughput sequencing. Environmental Microbiology, 2015, 17, 4035-4049.	3.8	384
7	Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature, 2012, 492, 59-65.	27.8	377
8	Marine Fungi: Their Ecology and Molecular Diversity. Annual Review of Marine Science, 2012, 4, 495-522.	11.6	366
9	A fungal pathogen secretes plant alkalinizing peptides to increase infection. Nature Microbiology, 2016, 1, 16043.	13.3	249
10	Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15258-15263.	7.1	225
11	Yeast forms dominate fungal diversity in the deep oceans. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 3069-3077.	2.6	209
12	The Ecology and Evolution of Pangenomes. Current Biology, 2019, 29, R1094-R1103.	3.9	206
13	Evolution of Filamentous Plant Pathogens: Gene Exchange across Eukaryotic Kingdoms. Current Biology, 2006, 16, 1857-1864.	3.9	197
14	Molecular diversity and distribution of marine fungi across 130 European environmental samples. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20152243.	2.6	177
15	Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME Journal, 2016, 10, 2158-2173.	9.8	177
16	The molecular diversity of freshwater picoeukaryotes from an oligotrophic lake reveals diverse, distinctive and globally dispersed lineages. Environmental Microbiology, 2005, 7, 1413-1425.	3.8	171
17	Evolutionary Origins of the Eukaryotic Shikimate Pathway: Gene Fusions, Horizontal Gene Transfer, and Endosymbiotic Replacements. Eukaryotic Cell, 2006, 5, 1517-1531.	3.4	170
18	Phylogenomic Analysis Demonstrates a Pattern of Rare and Ancient Horizontal Gene Transfer between Plants and Fungi. Plant Cell, 2009, 21, 1897-1911.	6.6	162

#	Article	IF	Citations
19	Patterns of kinesin evolution reveal a complex ancestral eukaryote with a multifunctional cytoskeleton. BMC Evolutionary Biology, 2010, 10, 110.	3.2	138
20	A Rhodopsin-Guanylyl Cyclase Gene Fusion Functions in Visual Perception in a Fungus. Current Biology, 2014, 24, 1234-1240.	3.9	134
21	Gene transfer into the fungi. Fungal Biology Reviews, 2011, 25, 98-110.	4.7	127
22	Horizontal Gene Transfer in Eukaryotic Plant Pathogens. Annual Review of Phytopathology, 2014, 52, 583-614.	7.8	126
23	Evolution and Classification of Myosins, a Paneukaryotic Whole-Genome Approach. Genome Biology and Evolution, 2014, 6, 290-305.	2.5	121
24	Dynamics of genomic innovation in the unicellular ancestry of animals. ELife, 2017, 6, .	6.0	121
25	A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20574-20583.	7.1	120
26	Sequence locally, think globally: The Darwin Tree of Life Project. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	120
27	Molecular screening of free-living microbial eukaryotes: diversity and distribution using a meta-analysis. Current Opinion in Microbiology, 2005, 8, 240-252.	5.1	111
28	DNA evidence for global dispersal and probable endemicity of protozoa. BMC Evolutionary Biology, 2007, 7, 162.	3.2	111
29	Insights from Sequencing Fungal and Oomycete Genomes: What Can We Learn about Plant Disease and the Evolution of Pathogenicity?. Plant Cell, 2007, 19, 3318-3326.	6.6	110
30	Benthic protists: the under-charted majority. FEMS Microbiology Ecology, 2016, 92, fiw120.	2.7	94
31	Newly identified and diverse plastid-bearing branch on the eukaryotic tree of life. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1496-1500.	7.1	92
32	Three reasons to re-evaluate fungal diversity â€~on Earth and in the ocean'. Fungal Biology Reviews, 2011, 25, 159-164.	4.7	88
33	Systematic evaluation of horizontal gene transfer between eukaryotes and viruses. Nature Microbiology, 2022, 7, 327-336.	13.3	87
34	Evidence for mitochondrial-derived alternative oxidase in the apicomplexan parasite Cryptosporidium parvum: a potential anti-microbial agent target. International Journal for Parasitology, 2004, 34, 297-308.	3.1	86
35	Horizontal gene transfer in osmotrophs: playing with public goods. Nature Reviews Microbiology, 2013, 11, 720-727.	28.6	85
36	Predicted microbial secretomes and their target substrates in marine sediment. Nature Microbiology, 2018, 3, 32-37.	13.3	85

#	Article	IF	CITATIONS
37	Morphological Identification and Single-Cell Genomics of Marine Diplonemids. Current Biology, 2016, 26, 3053-3059.	3.9	83
38	Validation and justification of the phylum name Cryptomycota phyl. nov IMA Fungus, 2011, 2, 173-175.	3.8	81
39	The Role of Horizontal Gene Transfer in the Evolution of the Oomycetes. PLoS Pathogens, 2015, 11, e1004805.	4.7	75
40	Host-derived viral transporter protein for nitrogen uptake in infected marine phytoplankton. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7489-E7498.	7.1	74
41	Evolution of the Isd11–IscS Complex Reveals a Single α-Proteobacterial Endosymbiosis for All Eukaryotes. Molecular Biology and Evolution, 2006, 23, 1341-1344.	8.9	69
42	Ancient diversification of eukaryotic MCM DNA replication proteins. BMC Evolutionary Biology, 2009, 9, 60.	3.2	68
43	Cryptic infection of a broad taxonomic and geographic diversity of tadpoles by Perkinsea protists. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4743-51.	7.1	68
44	A complete shikimate pathway in Toxoplasma gondii: an ancient eukaryotic innovation. International Journal for Parasitology, 2004, 34, 5-13.	3.1	65
45	What Defines the "Kingdom―Fungi?. Microbiology Spectrum, 2017, 5, .	3.0	59
46	Phylogenetic diversity and biogeography of the Mamiellophyceae lineage of eukaryotic phytoplankton across the oceans. Environmental Microbiology Reports, 2016, 8, 461-469.	2.4	56
47	The unusual mitochondrial compartment of Cryptosporidium parvum. Trends in Parasitology, 2005, 21, 68-74.	3.3	54
48	Diverse molecular signatures for ribosomally â€~active' Perkinsea in marine sediments. BMC Microbiology, 2014, 14, 110.	3.3	54
49	Diversity and distribution of unicellular opisthokonts along the <scp>E</scp> uropean coast analysed using highâ€throughput sequencing. Environmental Microbiology, 2015, 17, 3195-3207.	3.8	52
50	Identifying protist consumers of photosynthetic picoeukaryotes in the surface ocean using stable isotope probing. Environmental Microbiology, 2018, 20, 815-827.	3.8	51
51	Genome-scale comparative analysis of gene fusions, gene fissions, and the fungal tree of life. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21402-21407.	7.1	47
52	Genome Evolution: Horizontal Movements in the Fungi. Current Biology, 2011, 21, R166-R168.	3.9	45
53	Unexpected mitochondrial genome diversity revealed by targeted single-cell genomics of heterotrophic flagellated protists. Nature Microbiology, 2020, 5, 154-165.	13.3	44
54	Single cell genomics of uncultured marine alveolates shows paraphyly of basal dinoflagellates. ISME Journal, 2018, 12, 304-308.	9.8	40

#	Article	IF	Citations
55	Enzymes of type II fatty acid synthesis and apicoplast differentiation and division in Eimeria tenella. International Journal for Parasitology, 2007, 37, 33-51.	3.1	39
56	Environment-dependent fitness gains can be driven by horizontal gene transfer of transporter-encoding genes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5613-5622.	7.1	37
57	Cell Evolution: Gene Transfer Agents and the Origin of Mitochondria. Current Biology, 2011, 21, R112-R114.	3.9	34
58	The Secreted Proteins of Achlya hypogyna and Thraustotheca clavata Identify the Ancestral Oomycete Secretome and Reveal Gene Acquisitions by Horizontal Gene Transfer. Genome Biology and Evolution, 2015, 7, 120-135.	2.5	34
59	Assessing the Diversity and Distribution of Apicomplexans in Host and Free-Living Environments Using High-Throughput Amplicon Data and a Phylogenetically Informed Reference Framework. Frontiers in Microbiology, 2019, 10, 2373.	3.5	33
60	Gene transfer: anything goes in plant mitochondria. BMC Biology, 2010, 8, 147.	3.8	32
61	Evolutionary Diversification of Eukaryotic DNA Replication Machinery. Sub-Cellular Biochemistry, 2012, 62, 19-35.	2.4	31
62	Comparative genomic analysis of the â€~pseudofungus' <i>Hyphochytrium catenoides</i> . Open Biology, 2018, 8, 170184.	3.6	31
63	Organelle Evolution: A Mosaic of â€~Mitochondrial' Functions. Current Biology, 2014, 24, R518-R520.	3.9	30
64	Osmotrophy. Current Biology, 2018, 28, R1179-R1180.	3.9	29
65	Chytrid fungi distribution and co-occurrence with diatoms correlate with sea ice melt in the Arctic Ocean. Communications Biology, 2020, 3, 183.	4.4	29
66	Ancient animal ancestry for nuclear myosin. Journal of Cell Science, 2009, 122, 636-643.	2.0	27
67	A tale of two tardigrades. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4892-4894.	7.1	26
68	Specialized proteomic responses and an ancient photoprotection mechanism sustain marine green algal growth during phosphate limitation. Nature Microbiology, 2018, 3, 781-790.	13.3	26
69	Ancestral Function and Diversification of a Horizontally Acquired Oomycete Carboxylic Acid Transporter. Molecular Biology and Evolution, 2018, 35, 1887-1900.	8.9	24
70	Intracellular Infection of Diverse Diatoms by an Evolutionary Distinct Relative of the Fungi. Current Biology, 2019, 29, 4093-4101.e4.	3.9	24
71	PDZD8 is not the †functional ortholog' of Mmm1, it is a paralog. F1000Research, 2018, 7, 1088.	1.6	23
72	A Cyclic GMP-Dependent K ⁺ Channel in the Blastocladiomycete Fungus Blastocladiella emersonii. Eukaryotic Cell, 2015, 14, 958-963.	3.4	19

#	Article	IF	Citations
73	Controlled sampling of ribosomally active protistan diversity in sediment-surface layers identifies putative players in the marine carbon sink. ISME Journal, 2020, 14, 984-998.	9.8	19
74	\langle i $>$ Nematopsis temporariae $<$ $ $ i $>$ (Gregarinasina, Apicomplexa, Alveolata) is an intracellular infectious agent of tadpole livers. Environmental Microbiology Reports, 2016, 8, 675-679.	2.4	18
75	Plant Parasitic Oomycetes Such as <i>Phytophthora </i> Species Contain Genes Derived from Three Eukaryotic Lineages. Plant Signaling and Behavior, 2007, 2, 112-114.	2.4	17
76	Cellular maintenance processes that potentially underpin the survival of subseafloor fungi over geological timescales. Estuarine, Coastal and Shelf Science, 2015, 164, A1-A9.	2.1	17
77	A Revised Taxonomy of Diplonemids Including the Eupelagonemidae n. fam. and a Type Species, <i>Eupelagonema oceanica</i> n. gen. & amp; sp Journal of Eukaryotic Microbiology, 2019, 66, 519-524.	1.7	17
78	Evolutionary conservation of a core fungal phosphate homeostasis pathway coupled to development in Blastocladiella emersonii. Fungal Genetics and Biology, 2018, 115, 20-32.	2.1	13
79	A single-cell genome reveals diplonemid-like ancestry of kinetoplastid mitochondrial gene structure. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190100.	4.0	13
80	A light-sensing system in the common ancestor of the fungi. Current Biology, 2022, 32, 3146-3153.e3.	3.9	13
81	A Molecular Perspective on Ecological Differentiation and Biogeography of Cyclotrichiid Ciliates. Journal of Eukaryotic Microbiology, 2009, 56, 559-567.	1.7	12
82	Complex Patterns of Gene Fission in the Eukaryotic Folate Biosynthesis Pathway. Genome Biology and Evolution, 2014, 6, 2709-2720.	2.5	12
83	Single cell ecology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190076.	4.0	11
84	Single-Cell Transcriptomics of Abedinium Reveals a New Early-Branching Dinoflagellate Lineage. Genome Biology and Evolution, 2020, 12, 2417-2428.	2.5	11
85	Nutrient and salt depletion synergistically boosts glucose metabolism in individual Escherichia coli cells. Communications Biology, 2022, 5, 385.	4.4	11
86	Single-cell genomics unveils a canonical origin of the diverse mitochondrial genomes of euglenozoans. BMC Biology, 2021, 19, 103.	3.8	10
87	How to build a microbial eye. Nature, 2015, 523, 166-167.	27.8	9
88	Diverse alveolate infections of tadpoles, a new threat to frogs?. PLoS Pathogens, 2020, 16, e1008107.	4.7	9
89	3 Environmental DNA Analysis and the Expansion of the Fungal Tree of Life., 2011,, 37-54.		8
90	Expanded host and geographic range of tadpole associations with the Severe Perkinsea Infection group. Biology Letters, 2021, 17, 20210166.	2.3	8

#	Article	IF	CITATIONS
91	Emergent RNA–RNA interactions can promote stability in a facultative phototrophic endosymbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	8
92	REFGEN and TREENAMER: Automated Sequence Data Handling for Phylogenetic Analysis in the Genomic Era. Evolutionary Bioinformatics, 2009, 5, EBO.S2331.	1.2	6
93	What Defines the "Kingdom―Fungi?. , 2017, , 57-77.		6
94	Characterization of the RNA-interference pathway as a tool for reverse genetic analysis in the nascent phototrophic endosymbiosis, <i>Paramecium bursaria</i> . Royal Society Open Science, 2021, 8, 210140.	2.4	6
95	A functional bacteria-derived restriction modification system in the mitochondrion of a heterotrophic protist. PLoS Biology, 2021, 19, e3001126.	5.6	6
96	Revealing microparasite diversity in aquatic environments using brute force molecular techniques and subtle microscopy. , 0 , , 93-116.		5
97	Coral symbiosis is a three-player game. Nature, 2019, 568, 41-42.	27.8	4
98	A cell–cell atlas approach for understanding symbiotic interactions between microbes. Current Opinion in Microbiology, 2021, 64, 47-59.	5.1	4
99	A novel duplex qPCR assay for stepwise detection of multiple Perkinsea protistan infections of amphibian tissues. Royal Society Open Science, 2021, 8, 202150.	2.4	3
100	Symbiosis: Wolf Lichens Harbour a Choir of Fungi. Current Biology, 2019, 29, R88-R90.	3.9	3
101	Phylogeny, Evidence for a Cryptic Plastid, and Distribution of <i>Chytriodinium</i> Parasites (Dinophyceae) Infecting Copepods. Journal of Eukaryotic Microbiology, 2019, 66, 574-581.	1.7	2
102	A role for fungi as parasites in the black box of marine trophic interactions. Environmental Microbiology Reports, 2016, 8, 429-430.	2.4	1
103	Exaggerated trans-membrane charge of ammonium transporters in nutrient-poor marine environments. Open Biology, 2022, 12, .	3.6	1
104	微生物ã®ã€Œçœ¼ã€ã∙ã©ã†ã,"ã£ã∮ã§ãã¥ã®ã•. Nature Digest, 2015, 12, 31-32.	0.0	0
105	Pushing the envelope. ELife, 2017, 6, .	6.0	0