

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5313318/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Graphdiyne Oxides as Excellent Substrate for Electroless Deposition of Pd Clusters with High Catalytic Activity. Journal of the American Chemical Society, 2015, 137, 5260-5263.	13.7	341
2	Single-Layer MnO ₂ Nanosheets Suppressed Fluorescence of 7-Hydroxycoumarin: Mechanistic Study and Application for Sensitive Sensing of Ascorbic Acid in Vivo. Analytical Chemistry, 2014, 86, 12206-12213.	6.5	330
3	A Simple Assay for Direct Colorimetric Visualization of Trinitrotoluene at Picomolar Levels Using Gold Nanoparticles. Angewandte Chemie - International Edition, 2008, 47, 8601-8604.	13.8	316
4	Mitochondria Targeted Nanoscale Zeolitic Imidazole Framework-90 for ATP Imaging in Live Cells. Journal of the American Chemical Society, 2017, 139, 5877-5882.	13.7	291
5	Zeolitic Imidazolate Framework-Based Electrochemical Biosensor for in Vivo Electrochemical Measurements. Analytical Chemistry, 2013, 85, 7550-7557.	6.5	247
6	Real-time Ratiometric Fluorescent Assay for Alkaline Phosphatase Activity with Stimulus Responsive Infinite Coordination Polymer Nanoparticles. Analytical Chemistry, 2015, 87, 3080-3086.	6.5	223
7	A single-atom Fe–N ₄ catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection. Chemical Communications, 2019, 55, 159-162.	4.1	209
8	Aptamer-Based Electrochemical Sensors with Aptamerâ^'Complementary DNA Oligonucleotides as Probe. Analytical Chemistry, 2008, 80, 1883-1890.	6.5	203
9	Single-Atom Co–N ₄ Electrocatalyst Enabling Four-Electron Oxygen Reduction with Enhanced Hydrogen Peroxide Tolerance for Selective Sensing. Journal of the American Chemical Society, 2020, 142, 16861-16867.	13.7	184
10	In Vivo Analysis with Electrochemical Sensors and Biosensors. Analytical Chemistry, 2017, 89, 300-313.	6.5	169
11	Rational Design of Surface/Interface Chemistry for Quantitative in Vivo Monitoring of Brain Chemistry. Accounts of Chemical Research, 2012, 45, 533-543.	15.6	159
12	Carbon Atom Hybridization Matters: Ultrafast Humidity Response of Graphdiyne Oxides. Angewandte Chemie - International Edition, 2018, 57, 3922-3926.	13.8	159
13	Single-atom Ni-N4 provides a robust cellular NO sensor. Nature Communications, 2020, 11, 3188.	12.8	153
14	Molecular Films of Water-Miscible Ionic Liquids Formed on Glassy Carbon Electrodes:Â Characterization and Electrochemical Applications. Langmuir, 2005, 21, 9000-9006.	3.5	137
15	Competitive Coordination of Cu ²⁺ between Cysteine and Pyrophosphate Ion: Toward Sensitive and Selective Sensing of Pyrophosphate Ion in Synovial Fluid of Arthritis Patients. Analytical Chemistry, 2013, 85, 2516-2522.	6.5	118
16	Graphdiyne oxide as a platform for fluorescence sensing. Chemical Communications, 2016, 52, 5629-5632.	4.1	115
17	A Facile Electrochemical Method for Simultaneous and On-Line Measurements of Glucose and Lactate in Brain Microdialysate with Prussian Blue as the Electrocatalyst for Reduction of Hydrogen Peroxide. Analytical Chemistry, 2007, 79, 9577-9583.	6.5	113
18	Physiologically Relevant Online Electrochemical Method for Continuous and Simultaneous Monitoring of Striatum Glucose and Lactate Following Global Cerebral Ischemia/Reperfusion. Analytical Chemistry, 2009, 81, 2067-2074.	6.5	108

#	Article	IF	CITATIONS
19	<i>In Vivo</i> Electrochemical Sensors for Neurochemicals: Recent Update. ACS Sensors, 2019, 4, 3102-3118.	7.8	107
20	Micrometer-Scale lon Current Rectification at Polyelectrolyte Brush-Modified Micropipets. Journal of the American Chemical Society, 2017, 139, 1396-1399.	13.7	106
21	An efficient electrocatalyst for oxygen reduction reaction derived from a Co-porphyrin-based covalent organic framework. Electrochemistry Communications, 2015, 52, 53-57.	4.7	103
22	Vertically Aligned Carbon Nanotube-Sheathed Carbon Fibers as Pristine Microelectrodes for Selective Monitoring of Ascorbate in Vivo. Analytical Chemistry, 2014, 86, 3909-3914.	6.5	102
23	Silver Phosphate/Carbon Nanotube-Stabilized Pickering Emulsion for Highly Efficient Photocatalysis. Journal of Physical Chemistry C, 2013, 117, 15183-15191.	3.1	101
24	Continuous and Simultaneous Electrochemical Measurements of Glucose, Lactate, and Ascorbate in Rat Brain Following Brain Ischemia. Analytical Chemistry, 2014, 86, 3895-3901.	6.5	97
25	In Vivo Monitoring of Oxygen in Rat Brain by Carbon Fiber Microelectrode Modified with Antifouling Nanoporous Membrane. Analytical Chemistry, 2019, 91, 3645-3651.	6.5	97
26	Real-Time Colorimetric Assay of Inorganic Pyrophosphatase Activity Based on Reversibly Competitive Coordination of Cu ²⁺ between Cysteine and Pyrophosphate Ion. Analytical Chemistry, 2013, 85, 9409-9415.	6.5	94
27	Self-powered electrochemical systems as neurochemical sensors: toward self-triggered in vivo analysis of brain chemistry. Chemical Society Reviews, 2017, 46, 2692-2704.	38.1	89
28	Aspartic Acid-Promoted Highly Selective and Sensitive Colorimetric Sensing of Cysteine in Rat Brain. Analytical Chemistry, 2012, 84, 9579-9584.	6.5	88
29	Online Electrochemical Monitoring of Dynamic Change of Hippocampal Ascorbate: Toward a Platform for In Vivo Evaluation of Antioxidant Neuroprotective Efficiency against Cerebral Ischemia Injury. Analytical Chemistry, 2013, 85, 9947-9954.	6.5	87
30	Dual Recognition Unit Strategy Improves the Specificity of the Adenosine Triphosphate (ATP) Aptamer Biosensor for Cerebral ATP Assay. Analytical Chemistry, 2015, 87, 1373-1380.	6.5	86
31	Biological Applications of Organic Electrochemical Transistors: Electrochemical Biosensors and Electrophysiology Recording. Frontiers in Chemistry, 2019, 7, 313.	3.6	85
32	Laccase-catalyzed oxidation and intramolecular cyclization of dopamine: A new method for selective determination of dopamine with laccase/carbon nanotube-based electrochemical biosensors. Electrochimica Acta, 2007, 52, 4144-4152.	5.2	81
33	High‥ield and Damageâ€free Exfoliation of Layered Graphdiyne in Aqueous Phase. Angewandte Chemie - International Edition, 2019, 58, 746-750.	13.8	79
34	Dynamic regional changes of extracellular ascorbic acid during global cerebral ischemia: Studied with in vivo microdialysis coupled with on-line electrochemical detection. Brain Research, 2009, 1253, 161-168.	2.2	75
35	Photoinduced Regeneration of an Aptamer-Based Electrochemical Sensor for Sensitively Detecting Adenosine Triphosphate. Analytical Chemistry, 2018, 90, 4968-4971.	6.5	73
36	Role of Organic Solvents in Immobilizing Fungus Laccase on Single-Walled Carbon Nanotubes for Improved Current Response in Direct Bioelectrocatalysis. Journal of the American Chemical Society, 2017, 139, 1565-1574.	13.7	71

#	Article	IF	CITATIONS
37	Metal–Organic Framework Membrane Nanopores as Biomimetic Photoresponsive Ion Channels and Photodriven Ion Pumps. Angewandte Chemie - International Edition, 2020, 59, 12795-12799.	13.8	70
38	Graphdiyne as Electrode Material: Tuning Electronic State and Surface Chemistry for Improved Electrode Reactivity. Analytical Chemistry, 2017, 89, 13008-13015.	6.5	67
39	Rational Functionalization of Carbon Nanotube/Ionic Liquid Bucky Gel with Dual Tailor-Made Electrocatalysts for Four-Electron Reduction of Oxygen. Journal of Physical Chemistry C, 2008, 112, 2177-2182.	3.1	64
40	Graphene as a Spacer to Layer-by-Layer Assemble Electrochemically Functionalized Nanostructures for Molecular Bioelectronic Devices. Langmuir, 2011, 27, 11180-11186.	3.5	64
41	Graphdiyne-Promoted Highly Efficient Photocatalytic Activity of Graphdiyne/Silver Phosphate Pickering Emulsion Under Visible-Light Irradiation. ACS Applied Materials & Interfaces, 2019, 11, 2684-2691.	8.0	64
42	Electron Hopping by Interfacing Semiconducting Graphdiyne Nanosheets and Redox Molecules for Selective Electrocatalysis. Journal of the American Chemical Society, 2020, 142, 2074-2082.	13.7	63
43	Graphdiyne oxide: a new carbon nanozyme. Chemical Communications, 2020, 56, 5115-5118.	4.1	63
44	Noncovalent Attachment of NAD ⁺ Cofactor onto Carbon Nanotubes for Preparation of Integrated Dehydrogenase-Based Electrochemical Biosensors. Langmuir, 2010, 26, 6028-6032.	3.5	61
45	Visualization and Quantification of Neurochemicals with Gold Nanoparticles: Opportunities and Challenges. Advanced Materials, 2014, 26, 6933-6943.	21.0	59
46	Anion-Exchange-Based Amperometric Assay for Heparin Using Polyimidazolium as Synthetic Receptor. Analytical Chemistry, 2013, 85, 3439-3445.	6.5	58
47	MnO ₂ nanosheets based fluorescent sensing platform with organic dyes as a probe with excellent analytical properties. Analyst, The, 2015, 140, 4021-4029.	3.5	58
48	A non-oxidative electrochemical approach to online measurements of dopamine release through laccase-catalyzed oxidation and intramolecular cyclization of dopamine. Biosensors and Bioelectronics, 2010, 25, 1350-1355.	10.1	57
49	Alkaline Post-Treatment of Cd(II)–Glutathione Coordination Polymers: Toward Green Synthesis of Water-Soluble and Cytocompatible CdS Quantum Dots with Tunable Optical Properties. ACS Applied Materials & Interfaces, 2013, 5, 5239-5246.	8.0	56
50	Platinized Aligned Carbon Nanotube-Sheathed Carbon Fiber Microelectrodes for In Vivo Amperometric Monitoring of Oxygen. Analytical Chemistry, 2014, 86, 5017-5023.	6.5	56
51	Colorimetric and Fluorescent Dual Mode Sensing of Alcoholic Strength in Spirit Samples with Stimuli-Responsive Infinite Coordination Polymers. Analytical Chemistry, 2015, 87, 6958-6965.	6.5	56
52	Biofuel cell-based self-powered biogenerators for online continuous monitoring of neurochemicals in rat brain. Analyst, The, 2013, 138, 179-185.	3.5	55
53	Electrochemical Monitoring of Propagative Fluctuation of Ascorbate in the Live Rat Brain during Spreading Depolarization. Angewandte Chemie - International Edition, 2019, 58, 6616-6619.	13.8	55
54	Aptamer-based electrochemical sensors that are not based on the target binding-induced conformational change of aptamers. Analyst, The, 2008. 133. 1256.	3.5	52

#	Article	IF	CITATIONS
55	Comparative study of change in extracellular ascorbic acid in different brain ischemia/reperfusion models with in vivo microdialysis combined with on-line electrochemical detection. Neurochemistry International, 2008, 52, 1247-1255.	3.8	51
56	Chaotropic Monovalent Anionâ€Induced Rectification Inversion at Nanopipettes Modified by Polyimidazolium Brushes. Angewandte Chemie - International Edition, 2018, 57, 4590-4593.	13.8	51
57	Highly Selective Cerebral ATP Assay Based on Micrometer Scale Ion Current Rectification at Polyimidazolium-Modified Micropipettes. Analytical Chemistry, 2017, 89, 6794-6799.	6.5	48
58	Natural Leukocyte Membrane-Masked Microelectrodes with an Enhanced Antifouling Ability and Biocompatibility for <i>In Vivo</i> Electrochemical Sensing. Analytical Chemistry, 2020, 92, 11374-11379.	6.5	48
59	Hybridization of Bioelectrochemically Functional Infinite Coordination Polymer Nanoparticles with Carbon Nanotubes for Highly Sensitive and Selective In Vivo Electrochemical Monitoring. Analytical Chemistry, 2013, 85, 4007-4013.	6.5	47
60	Recent advances on inÂvivo analysis of ascorbic acid in brain functions. TrAC - Trends in Analytical Chemistry, 2018, 109, 247-259.	11.4	47
61	High Antifouling Property of Ion-Selective Membrane: toward In Vivo Monitoring of pH Change in Live Brain of Rats with Membrane-Coated Carbon Fiber Electrodes. Analytical Chemistry, 2016, 88, 11238-11243.	6.5	46
62	Unveiling the Role of DJâ€1 Protein in Vesicular Storage and Release of Catecholamine with Nano/Microâ€Tip Electrodes. Angewandte Chemie - International Edition, 2020, 59, 11061-11065.	13.8	44
63	Rational Functionalization of Carbon Nanotubes Leading to Electrochemical Devices with Striking Applications. Advanced Materials, 2008, 20, 2899-2906.	21.0	43
64	Singleâ€Carbonâ€Fiberâ€Powered Microsensor for In Vivo Neurochemical Sensing with High Neuronal Compatibility. Angewandte Chemie - International Edition, 2020, 59, 22652-22658.	13.8	43
65	Deep Learning for Voltammetric Sensing in a Living Animal Brain. Angewandte Chemie - International Edition, 2021, 60, 23777-23783.	13.8	43
66	Microfluidic Chip-Based Online Electrochemical Detecting System for Continuous and Simultaneous Monitoring of Ascorbate and Mg ²⁺ in Rat Brain. Analytical Chemistry, 2013, 85, 7599-7605.	6.5	42
67	Strong Interaction between Imidazolium-Based Polycationic Polymer and Ferricyanide: Toward Redox Potential Regulation for Selective In Vivo Electrochemical Measurements. Analytical Chemistry, 2012, 84, 1900-1906.	6.5	40
68	Observing single nanoparticle events at the orifice of a nanopipet. Chemical Science, 2016, 7, 6365-6368.	7.4	40
69	On-site sensors based on infinite coordination polymer nanoparticles: Recent progress and future challenge. Applied Materials Today, 2018, 11, 338-351.	4.3	38
70	Bioelectrochemically Active Infinite Coordination Polymer Nanoparticles: Oneâ€Pot Synthesis and Biosensing Property. Chemistry - A European Journal, 2011, 17, 11390-11393.	3.3	37
71	Sensitive and Fast Humidity Sensor Based on A Redox Conducting Supramolecular Ionic Material for Respiration Monitoring. Analytical Chemistry, 2017, 89, 996-1001.	6.5	37
72	Tuning interionic interaction for highly selective in vivo analysis. Chemical Society Reviews, 2015, 44, 5959-5968.	38.1	36

#	Article	IF	CITATIONS
73	Carbon Atom Hybridization Matters: Ultrafast Humidity Response of Graphdiyne Oxides. Angewandte Chemie, 2018, 130, 3986-3990.	2.0	36
74	A single-atom Cu–N ₂ catalyst eliminates oxygen interference for electrochemical sensing of hydrogen peroxide in a living animal brain. Chemical Science, 2021, 12, 15045-15053.	7.4	36
75	Selective Amperometric Recording of Endogenous Ascorbate Secretion from a Single Rat Adrenal Chromaffin Cell with Pretreated Carbon Fiber Microelectrodes. Analytical Chemistry, 2017, 89, 9502-9507.	6.5	35
76	Galvanic Redox Potentiometry for Self-Driven in Vivo Measurement of Neurochemical Dynamics at Open-Circuit Potential. Analytical Chemistry, 2018, 90, 13021-13029.	6.5	35
77	Ion current rectification: from nanoscale to microscale. Science China Chemistry, 2019, 62, 1346-1359.	8.2	35
78	In Situ Cationic Ring-Opening Polymerization and Quaternization Reactions To Confine Ferricyanide onto Carbon Nanotubes: A General Approach to Development of Integrative Nanostructured Electrochemical Biosensors. Analytical Chemistry, 2008, 80, 6587-6593.	6.5	33
79	Electrochemical Post-Treatment of Infinite Coordination Polymers: An Effective Route to Preparation of Pd Nanoparticles Supported onto Carbon Nanotubes with Enhanced Electrocatalytic Activity toward Ethanol Oxidation. ACS Applied Materials & Interfaces, 2013, 5, 11471-11478.	8.0	33
80	Online Electrochemical Measurements of Ca2+and Mg2+in Rat Brain Based on Divalent Cation Enhancement toward Electrocatalytic NADH Oxidation. Analytical Chemistry, 2010, 82, 9885-9891.	6.5	32
81	A multi-enzyme microreactor-based online electrochemical system for selective and continuous monitoring of acetylcholine. Analyst, The, 2015, 140, 3781-3787.	3.5	32
82	Dualâ€function interface engineering for efficient perovskite solar cells. EcoMat, 2021, 3, e12092.	11.9	32
83	Galvanic Redox Potentiometry Based Microelectrode Array for Synchronous Ascorbate and Single-Unit Recordings in Rat Brain. Analytical Chemistry, 2020, 92, 10177-10182.	6.5	30
84	Rational Design and One-Step Formation of Multifunctional Gel Transducer for Simple Fabrication of Integrated Electrochemical Biosensors. Analytical Chemistry, 2011, 83, 5715-5720.	6.5	29
85	Photodecomposition of Ferrocenedicarboxylic Acid in Methanol to Form an Electroactive Infinite Coordination Polymer and Its Application in Bioelectrochemistry. ACS Applied Materials & Interfaces, 2013, 5, 8120-8124.	8.0	28
86	Effective Visualization Assay for Alcohol Content Sensing and Methanol Differentiation with Solvent Stimuli-Responsive Supramolecular Ionic Materials. Analytical Chemistry, 2014, 86, 7280-7285.	6.5	28
87	Dopamineâ€Directed Inâ€Situ and Oneâ€Step Synthesis of Au@Ag Core–Shell Nanoparticles Immobilized to a Metal–Organic Framework for Synergistic Catalysis. Chemistry - an Asian Journal, 2016, 11, 2705-2709.	3.3	28
88	Potential-controllable green synthesis and deposition of metal nanoparticles with electrochemical method. Journal of Materials Chemistry, 2010, 20, 5820.	6.7	26
89	Rational Design of Bioelectrochemically Multifunctional Film with Oxidase, Ferrocene, and Graphene Oxide for Development of in Vivo Electrochemical Biosensors. Analytical Chemistry, 2016, 88, 5885-5891.	6.5	26
90	Carbon support tuned electrocatalytic activity of a single-site metal–organic framework toward the oxygen reduction reaction. Chemical Science, 2021, 12, 7908-7917.	7.4	26

#	Article	IF	CITATIONS
91	Real-time and in-situ intracellular ATP assay with polyimidazolium brush-modified nanopipette. Science China Chemistry, 2020, 63, 1004-1011.	8.2	25
92	Synaptic Iontronic Devices for Brain-Mimicking Functions: Fundamentals and Applications. ACS Applied Bio Materials, 2021, 4, 71-84.	4.6	25
93	Fastâ€Scanning Potentialâ€Gated Organic Electrochemical Transistors for Highly Sensitive Sensing of Dopamine in Living Rat Brain. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25
94	Bioelectrochemistry for in vivo analysis: Interface engineering toward implantable electrochemical biosensors. Current Opinion in Electrochemistry, 2017, 5, 152-157.	4.8	24
95	An Electrochemical Method for Investigation of Conformational Flexibility of Active Sites of <i>Trametes versicolor</i> Laccase Based on Sensitive Determination of Copper Ion with Cysteine-Modified Electrodes. Analytical Chemistry, 2012, 84, 9416-9421.	6.5	23
96	In Vivo Electrochemical Monitoring of the Change of Cochlear Perilymph Ascorbate during Salicylate-Induced Tinnitus. Analytical Chemistry, 2012, 84, 5433-5438.	6.5	23
97	Counting and Sizing of Single Vesicles/Liposomes by Electrochemical Events. ChemElectroChem, 2018, 5, 2954-2962.	3.4	23
98	Unveiling the Role of DJâ€l Protein in Vesicular Storage and Release of Catecholamine with Nano/Microâ€Tip Electrodes. Angewandte Chemie, 2020, 132, 11154-11158.	2.0	23
99	Continuous Electrochemical Monitoring of Extracellular Lactate Production from Neonatal Rat Cardiomyocytes following Myocardial Hypoxia. Analytical Chemistry, 2012, 84, 5285-5291.	6.5	22
100	Chaotropic Monovalent Anionâ€Induced Rectification Inversion at Nanopipettes Modified by Polyimidazolium Brushes. Angewandte Chemie, 2018, 130, 4680-4683.	2.0	22
101	Micrometer-scale transient ion transport for real-time pH assay in living rat brains. Chemical Science, 2021, 12, 7369-7376.	7.4	22
102	Exploring Ferredoxin-Dependent Glutamate Synthase as an Enzymatic Bioelectrocatalyst. Journal of the American Chemical Society, 2018, 140, 12700-12704.	13.7	21
103	Optoelectronic modulation of ionic conductance and rectification through a heterogeneous 1D/2D nanofluidic membrane. Chemical Communications, 2020, 56, 3508-3511.	4.1	21
104	Rapid and Costâ€Effective Synthesis of Nanosized Zeolitic Imidazolate Frameworkâ€7 with <i>N</i> , <i>N</i> ′â€Dimethylformamide as Solvent and Metal Acetate Salt as Metal Source. ChemPlusChem, 2014, 79, 907-913.	2.8	20
105	Sizing Single Particles at the Orifice of a Nanopipette. ACS Sensors, 2020, 5, 2351-2358.	7.8	19
106	Nitrogen-doped carbon nanotubes as an excellent substrate for electroless deposition of Pd nanoparticles with a high efficiency toward the hydrogen evolution reaction. Electrochemistry Communications, 2018, 90, 91-95.	4.7	18
107	Electrochemical Monitoring of Propagative Fluctuation of Ascorbate in the Live Rat Brain during Spreading Depolarization. Angewandte Chemie, 2019, 131, 6688-6691.	2.0	18
108	In vivo and continuous measurement of bisulfide in the hippocampus of rat's brain by an on-line integrated microdialysis/droplet-based microfluidic system. Analyst, The, 2015, 140, 3814-3819.	3.5	17

#	Article	IF	CITATIONS
109	Cysteine-modulated colorimetric sensing of extracellular Mg2+ in rat brain based on the strong chelation interaction between dithiothreitol and Mg2+. Analyst, The, 2013, 138, 3046.	3.5	15
110	Ischemic Postconditioning Recovers Cortex Ascorbic Acid during Ischemia/Reperfusion Monitored with an Online Electrochemical System. ACS Chemical Neuroscience, 2019, 10, 2576-2583.	3.5	15
111	Metal–Organic Framework Membrane Nanopores as Biomimetic Photoresponsive Ion Channels and Photodriven Ion Pumps. Angewandte Chemie, 2020, 132, 12895-12899.	2.0	15
112	Voltage-driven counting of phospholipid vesicles with nanopipettes by resistive-pulse principle. Electrochemistry Communications, 2018, 89, 38-42.	4.7	14
113	Analytical and Quantitative in Vivo Monitoring of Brain Neurochemistry by Electrochemical and Imaging Approaches. ACS Omega, 2018, 3, 13267-13274.	3.5	14
114	Label-Free Resistance Cytometry at the Orifice of a Nanopipette. Analytical Chemistry, 2021, 93, 2942-2949.	6.5	14
115	Online electrochemical system as an in vivo method to study dynamic changes of ascorbate in rat brain during 3-methylindole-induced olfactory dysfunction. Analyst, The, 2016, 141, 2199-2207.	3.5	13
116	In Vivo Monitoring of Oxygen Fluctuation Simultaneously at Multiple Sites of Rat Cortex during Spreading Depression. Analytical Chemistry, 2018, 90, 13783-13789.	6.5	12
117	Dynamic Behavior of Charged Particles at the Nanopipette Orifice. ACS Sensors, 2021, 6, 2330-2338.	7.8	12
118	Deep Learning for Voltammetric Sensing in a Living Animal Brain. Angewandte Chemie, 2021, 133, 23970-23976.	2.0	12
119	Electrochemical Quantification of Hygroscopicity of Ionic Liquids with Solutionâ€Dissolved Potassium Ferricyanide as the Redox Probe. Electroanalysis, 2011, 23, 2870-2877.	2.9	10
120	Ferricyanide-backfilled cylindrical carbon fiber microelectrodes for in vivo analysis with high stability and low polarized potential. Analyst, The, 2015, 140, 7154-7159.	3.5	10
121	High‥ield and Damageâ€free Exfoliation of Layered Graphdiyne in Aqueous Phase. Angewandte Chemie, 2019, 131, 756-760.	2.0	10
122	Comparative investigation of small laccase immobilized on carbon nanomaterials for direct bioelectrocatalysis of oxygen reduction. Electrochemistry Communications, 2019, 101, 82-87.	4.7	10
123	Light-Regulated Nanofluidic Ionic Diodes with Heterogeneous Channels Stemming from Asymmetric Growth of Metal–Organic Frameworks. Analytical Chemistry, 2022, 94, 4328-4334.	6.5	10
124	Charge–transfer interaction between melamine and quinones: Towards voltammetric determination of melamine. Electrochemistry Communications, 2013, 26, 89-92.	4.7	9
125	A Bioinspired Lightâ€Controlled Ionic Switch Based on Nanopipettes. Electroanalysis, 2015, 27, 879-883.	2.9	9
126	Simultaneous in vivo ascorbate and electrophysiological recordings in rat brain following ischemia/reperfusion. Journal of Electroanalytical Chemistry, 2016, 781, 90-96.	3.8	9

Ping Yu

#	Article	IF	CITATIONS
127	Singleâ€Carbonâ€Fiberâ€Powered Microsensor for In Vivo Neurochemical Sensing with High Neuronal Compatibility. Angewandte Chemie, 2020, 132, 22841-22847.	2.0	9
128	Lightâ€Controlled Ionic/Molecular Transport through Solidâ€State Nanopores and Nanochannels. Chemistry - an Asian Journal, 2022, 17, .	3.3	9
129	Highly selective generation of singlet oxygen from dioxygen with atomically dispersed catalysts. Chemical Science, 2022, 13, 5606-5615.	7.4	9
130	Fastâ€Scanning Potentialâ€Gated Organic Electrochemical Transistors for Highly Sensitive Sensing of Dopamine in Living Rat Brain. Angewandte Chemie, 2022, 134, .	2.0	8
131	Water-Stable, Adaptive, and Electroactive Supramolecular Ionic Material and Its Application in Biosensing. ACS Applied Materials & Interfaces, 2014, 6, 5988-5995.	8.0	7
132	Online electrochemical systems for continuous neurochemical measurements with low-potential mediator-based electrochemical biosensors as selective detectors. Analyst, The, 2015, 140, 5039-5047.	3.5	7
133	An Online Electrochemical System for Continuously Monitoring Uric Acid Change following Rabbit Kidney following Ischemia-reperfusion Injury. Electrochimica Acta, 2016, 209, 132-137.	5.2	7
134	Electrophoretically Sheathed Carbon Fiber Microelectrodes with Metal/Nitrogen/Carbon Electrocatalyst for Electrochemical Monitoring of Oxygen in Vivo. ACS Applied Bio Materials, 2019, 2, 1376-1383.	4.6	7
135	Improving the fluorescence detection limit with positively charged carbon nanostructures as a low background signal platform. Analyst, The, 2014, 139, 2114-2117.	3.5	6
136	Water Adsorption and Transport on Oxidized Twoâ€Dimensional Carbon Materials. Chemistry - A European Journal, 2019, 25, 3969-3978.	3.3	6
137	Exfoliated graphdiyne for the electroless deposition of Au nanoparticles with high catalytic activity. Analyst, The, 2021, 146, 444-449.	3.5	6
138	Tuning interionic interaction by rationally controlling solution pH for highly selective colorimetric sensing of arginine. Analytical and Bioanalytical Chemistry, 2016, 408, 3005-3012.	3.7	5
139	Label-free analysis of adsorbed protein heterogeneity on individual particles, based on single particle collision events. Electrochemistry Communications, 2020, 111, 106666.	4.7	5
140	Computer-Aided Rational Construction of Mediated Bioelectrocatalysis with π-Conjugated (Hetero)cyclic Molecules: Toward Promoted Distant Electron Tunneling and Improved Biosensing. Analytical Chemistry, 2022, 94, 8033-8040.	6.5	5
141	Insights into Surface Charge of Single Particles at the Orifice of a Nanopipette. Analytical Chemistry, 2022, 94, 8187-8193.	6.5	5
142	Electrochemical sensing of ATP with synthetic cyclophane as recognition element. Science in China Series B: Chemistry, 2009, 52, 741-745.	0.8	4
143	In vivo electrochemical recording of continuous change of magnesium in medial vestibular nucleus following vertigo induced by ice water vestibular stimulation. Science China Chemistry, 2013, 56, 256-261.	8.2	4
144	An Online Electrochemical System for Continuous Measurement of Glutamate with Signal Amplification by Enzymatic Substrate Cycling. Electroanalysis, 2015, 27, 2406-2411.	2.9	4

Ping Yu

#	Article	IF	CITATIONS
145	Synchronous Detection of Rat Neural Spike Firing and Neurochemical Signals Based on Dual-mode Recording Instrument. Chinese Journal of Analytical Chemistry, 2016, 44, 1458-1464.	1.7	4
146	Nonlinear dependence of the ion current rectification factor on bias voltage in conical nanopipettes. Journal of Electroanalytical Chemistry, 2016, 779, 106-111.	3.8	3
147	Singleâ€Vesicle Electrochemistry Reveals Sex Difference in Vesicular Storage and Release of Catecholamine. Angewandte Chemie, 0, , .	2.0	3
148	Role of rare-earth elements in enhancing bioelectrocatalysis for biosensing with NAD ⁺ -dependent glutamate dehydrogenase. Chemical Science, 2021, 12, 13434-13441.	7.4	2
149	Nanoparticles: Visualization and Quantification of Neurochemicals with Gold Nanoparticles: Opportunities and Challenges (Adv. Mater. 40/2014). Advanced Materials, 2014, 26, 6984-6984.	21.0	1
150	维生ç´C在脑æŸä¼æ¨¡åž‹ä,å•化规律的ç"ç©¶èį›å±•. Chinese Science Bulletin, 2022, , .	0.7	1
151	Frontispiece: Water Adsorption and Transport on Oxidized Twoâ€Dimensional Carbon Materials. Chemistry - A European Journal, 2019, 25, .	3.3	0
152	New Sensing Technologies: Sensors for In Vivo Analysis. , 2021, , .		0
153	Galvanic Redox Potentiometry for <i>In Vivo</i> Sensing. , 2021, , 453-481.		0
154	Electrochemical analysis of single particles. Scientia Sinica Chimica, 2016, 46, 1064-1079.	0.4	0