Rasoul Faraji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5313242/publications.pdf

Version: 2024-02-01

567281 752698 21 627 15 20 citations h-index g-index papers 559 21 21 21 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Soft-Switched Nonisolated High Step-Up Three-Port DC–DC Converter for Hybrid Energy Systems. IEEE Transactions on Power Electronics, 2018, 33, 10101-10111.	7.9	106
2	FPGAâ€based real time incremental conductance maximum power point tracking controller for photovoltaic systems. IET Power Electronics, 2014, 7, 1294-1304.	2.1	95
3	Soft-switched non-isolated high step-up multi-port DC-DC converter for hybrid energy system with minimum number of switches. International Journal of Electrical Power and Energy Systems, 2019, 106, 511-519.	5 . 5	49
4	Fully Soft-Switched High Step-Up Nonisolated Three-Port DC–DC Converter Using GaN HEMTs. IEEE Transactions on Industrial Electronics, 2020, 67, 8371-8380.	7.9	47
5	Fully Soft-Switched Multiport DC–DC Converter With High Integration. IEEE Transactions on Power Electronics, 2021, 36, 1901-1908.	7.9	42
6	Soft-Switched Single Inductor Single Stage Multiport Bidirectional Power Converter for Hybrid Energy Systems. IEEE Transactions on Power Electronics, 2021, 36, 11298-11315.	7.9	36
7	Developing More Efficient Wind Turbines: A Survey of Control Challenges and Opportunities. IEEE Industrial Electronics Magazine, 2020, 14, 53-64.	2.6	30
8	An Ultra High Step-Up DC–DC Converter Based on the Boost, Luo, and Voltage Doubler Structure: Mathematical Expression, Simulation, and Experimental. IEEE Access, 2021, 9, 132011-132024.	4.2	29
9	An efficient crossover architecture for hardware parallel implementation of genetic algorithm. Neurocomputing, 2014, 128, 316-327.	5. 9	28
10	A Lossless Passive Snubber Circuit for Three-Port DC–DC Converter. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 1905-1914.	5 . 4	24
11	Soft-Switched Three-Port DC-DC Converter With Simple Auxiliary Circuit. IEEE Access, 2021, 9, 66738-66750.	4.2	24
12	Application of Soft-Switching Cell With Inherent Redundancy Properties for Enhancing the Reliability of Boost-Based DC–DC Converters. IEEE Transactions on Power Electronics, 2021, 36, 12342-12354.	7.9	21
13	Adaptive Technique for Overcoming Performance Degradation Due to Aging on 6T SRAM Cells. IEEE Transactions on Device and Materials Reliability, 2014, 14, 1031-1040.	2.0	20
14	Efficient Multi-Port Bidirectional Converter With Soft-Switching Capability for Electric Vehicle Applications. IEEE Access, 2021, 9, 107079-107094.	4.2	20
15	Performance Improvement of a Three-Phase Interleaved DC–DC Converter Without Requiring Antisaturation Control for Postfault Conditions. IEEE Transactions on Power Electronics, 2021, 36, 7378-7383.	7.9	16
16	New SRAM design using body bias technique for lowâ€power and highâ€speed applications. International Journal of Circuit Theory and Applications, 2014, 42, 1189-1202.	2.0	14
17	Adaptive Edge Detection Technique Implemented on FPGA. Iranian Journal of Science and Technology - Transactions of Electrical Engineering, 2020, 44, 1571-1582.	2.3	8
18	Unbalanced currents effect on the thermal characteristic and reliability of parallel connected power switches. Case Studies in Thermal Engineering, 2021, 26, 101134.	5 . 7	8

#	Article	IF	CITATIONS
19	Efficiency improvement of integrated synchronous buck converter using body biasing for ultra-low-voltage applications. Microelectronics Journal, 2017, 63, 94-103.	2.0	5
20	A ZVS Three-Phase Interleaved DC-DC converter with SFM control method for the Microgrid Applications. , 2020, , .		3
21	Design a new MEMS tunable capacitors using electro-thermal actuators. Microsystem Technologies, 2015, 21, 2475-2483.	2.0	2