List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5313030/publications.pdf Version: 2024-02-01

MOHAMED LIEU

#	Article	IF	CITATIONS
1	A new generalization of the Banach contraction principle. Journal of Inequalities and Applications, 2014, 2014, .	0.5	188
2	Generalization of Caputo-Fabrizio Fractional Derivative and Applications to Electrical Circuits. Frontiers in Physics, 2020, 8, .	1.0	98
3	A generalized metric space and related fixed point theorems. Fixed Point Theory and Applications, 2015, 2015, .	1.1	76
4	Remarks on G-metric spaces and fixed point theorems. Fixed Point Theory and Applications, 2012, 2012, .	1.1	74
5	Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals. Journal of Inequalities and Applications, 2017, 2017, 55.	0.5	71
6	On a new generalization of metric spaces. Journal of Fixed Point Theory and Applications, 2018, 20, 1.	0.6	71
7	Analytical approach for time fractional wave equations in the sense of Yang-Abdel-Aty-Cattani via the homotopy perturbation transform method. AEJ - Alexandria Engineering Journal, 2020, 59, 2859-2863.	3.4	68
8	Further generalizations of the Banach contraction principle. Journal of Inequalities and Applications, 2014, 2014, .	0.5	61
9	Best proximity points for <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.gif" overflow="scroll"><mml:mi>α</mml:mi><mml:mtext>â€"</mml:mtext><mml:mi>Ĭ^</mml:mi></mml:math> -pro contractive type mappings and applications. Bulletin Des Sciences Mathematioues. 2013. 137. 977-995.	oximal	58
10	A numerical study of fractional relaxation–oscillation equations involving \$\$psi \$\$ Ï^ -Caputo fractional derivative. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2019, 113, 1873-1891.	0.6	43
11	On Positive Solutions for a Fractional Thermostat Model with a Convex–Concave Source Term via \$\$psi \$\$-Caputo Fractional Derivative. Mediterranean Journal of Mathematics, 2020, 17, 1.	0.4	42
12	A fractional model for population dynamics of two interacting species by using spectral and Hermite wavelets methods. Numerical Methods for Partial Differential Equations, 2021, 37, 1652-1672.	2.0	42
13	Solvability of integrodifferential problems via fixed point theory in b-metric spaces. Fixed Point Theory and Applications, 2015, 2015, .	1.1	41
14	A fractional derivative with two singular kernels and application to a heat conduction problem. Advances in Difference Equations, 2020, 2020, .	3.5	41
15	THE KANNANS FIXED POINT THEOREM IN A CONE RECTANGULAR METRIC SPACE. Journal of Nonlinear Science and Applications, 2009, 02, 161-167.	0.4	38
16	Fixed point theorems on ordered metric spaces and applications to nonlinear elastic beam equations. Journal of Fixed Point Theory and Applications, 2012, 12, 175-192.	0.6	36
17	On Hermite-Hadamard type inequalities via fractional integrals of a function with respect to another function. Journal of Nonlinear Science and Applications, 2016, 09, 1252-1260.	0.4	34
18	Best Proximity Points for Generalized <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="M1"><mml:mi mathvariant="bold-italic">α</mml:mi><mml:mtext>-</mml:mtext><mml:mi mathvariant="bold-italic">Î</mml:mi </mml:math> -Proximal Contractive Type Mappings. Journal of Applied Mathematics, 2013, 2013, 1-10.	0.4	32

#	Article	IF	CITATIONS
19	On HermiteHadamard type inequalities via generalized fractional integrals. Turkish Journal of Mathematics, 2016, 40, 1221-1230.	0.3	31
20	Fixed point theory in partial metric spaces via φ-fixed point's concept in metric spaces. Journal of Inequalities and Applications, 2014, 2014, .	0.5	29
21	Lyapunov-type inequalities for fractional partial differential equations. Applied Mathematics Letters, 2017, 66, 30-39.	1.5	29
22	Existence of positive solutions to an arbitrary order fractional differential equation via a mixed monotone operator method. Nonlinear Analysis: Modelling and Control, 2015, 20, 367-376.	1.1	27
23	New blow-up results for nonlinear boundary value problems in exterior domains. Nonlinear Analysis: Theory, Methods & Applications, 2019, 178, 348-365.	0.6	25
24	Fixed Points for Multivalued Mappings inb-Metric Spaces. Abstract and Applied Analysis, 2015, 2015, 1-7.	0.3	24
25	Critical criteria of Fujita type for a system of inhomogeneous wave inequalities in exterior domains. Journal of Differential Equations, 2020, 268, 3035-3056.	1.1	24
26	Existence of positive solutions to a coupled system of fractional differential equations. Mathematical Methods in the Applied Sciences, 2015, 38, 1014-1031.	1.2	22
27	Lyapunov-type inequalities for a fractional differential equation with mixed boundary conditions. Mathematical Inequalities and Applications, 2015, , 443-451.	0.1	22
28	Solutions of system of Volterra integroâ€differential equations using optimal homotopy asymptotic method. Mathematical Methods in the Applied Sciences, 2021, 44, 2671-2681.	1.2	19
29	A Lyapunov-Type Inequality for a Fractional Differential Equation under a Robin Boundary Condition. Journal of Function Spaces, 2015, 2015, 1-5.	0.4	18
30	Topological sensitivity analysis for the modified Helmholtz equation under an impedance condition on the boundary of a hole. Journal Des Mathematiques Pures Et Appliquees, 2015, 103, 557-574.	0.8	17
31	Exponential trigonometric convex functions and Hermite-Hadamard type inequalities. Mathematica Slovaca, 2021, 71, 43-56.	0.3	17
32	An end-to-end construction for compact constant mean curvature surfaces. Pacific Journal of Mathematics, 2005, 221, 81-108.	0.2	17
33	Fixed Point Results for <mml:math <br="" xmins:mml="http://www.w3.org/1998/Math/MathML">id="M1"> <mml:mrow> <mml:mi>î± </mml:mi> </mml:mrow> </mml:math> - <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"> <mml:mrow> <mml:msub> i^ î> î> xml:mi> xm</mml:msub></mml:mrow></mml:math 	0.3 mml:math>	15 -Contraction
34	on Gauge Spaces and Applications. Abstract and Applied Analysis, 2013, 2013, 1-7. Coupled fixed point theorems for generalized Mizoguchi-Takahashi contractions with applications. Fixed Point Theory and Applications, 2012, 2012, 51.	1.1	14
35	A Lyapunov-type inequality for a fractional q-difference boundary value problem. Journal of Nonlinear Science and Applications, 2016, 09, 1965-1976.	0.4	14
36	Magnetic Trajectories in an Almost Contact Metric Manifold \$\${mathbb{R}^{2N+1}}\$\$ R 2 N + 1. Results in Mathematics, 2015, 67, 125-134.	0.4	13

#	Article	IF	CITATIONS
37	On the critical behavior for inhomogeneous wave inequalities with Hardy potential in an exterior domain. Advances in Nonlinear Analysis, 2021, 10, 1267-1283.	1.3	13
38	Fixed Point Results for Almost Generalized Cyclic(ψ,φ)-Weak Contractive Type Mappings with Applications. Abstract and Applied Analysis, 2012, 2012, 1-17.	0.3	12
39	A derivative concept with respect to an arbitrary kernel and applications to fractional calculus. Mathematical Methods in the Applied Sciences, 2019, 42, 137-160.	1.2	12
40	New blow-up phenomena for hyperbolic inequalities with combined nonlinearities. Journal of Mathematical Analysis and Applications, 2021, 494, 124444.	0.5	12
41	On cyclic (ï^, ï;¼)-contractions in Kaleva-Seikkala's type fuzzy metric spaces. Journal of Intelligent and Fuzzy Systems, 2014, 27, 2045-2053.	0.8	11
42	Lyapunov-type inequalities for a fractional p-Laplacian equation. Journal of Inequalities and Applications, 2016, 2016, .	0.5	11
43	Lyapunov-type inequalities for a fractional p-Laplacian system. Fractional Calculus and Applied Analysis, 2017, 20, 1485-1506.	1.2	11
44	Hartman-Wintner-Type Inequality for a Fractional Boundary Value Problem via a Fractional Derivative with respect to Another Function. Discrete Dynamics in Nature and Society, 2017, 2017, 1-8.	0.5	11
45	A fixed point problem under two constraint inequalities. Fixed Point Theory and Applications, 2016, 2016, .	1.1	10
46	Discontinuous critical Fujita exponents for the heat equation with combined nonlinearities. Proceedings of the American Mathematical Society, 2020, 148, 2579-2593.	0.4	10
47	A Best Proximity Point Result in Modular Spaces with the Fatou Property. Abstract and Applied Analysis, 2013, 2013, 1-4.	0.3	9
48	Further Remarks on Fixed-Point Theorems in the Context of Partial Metric Spaces. Abstract and Applied Analysis, 2013, 2013, 1-6.	0.3	9
49	A numerical analysis for fractional model of the spread of pests in tea plants. Numerical Methods for Partial Differential Equations, 2020, , .	2.0	9
50	Feng-Liu type fixed point results for multivalued mappings on JS-metric spaces. Journal of Nonlinear Science and Applications, 2016, 09, 3892-3897.	0.4	9
51	Critical behavior for a semilinear parabolic equation with forcing term depending on time and space. Journal of Mathematical Analysis and Applications, 2020, 486, 123931.	0.5	8
52	Best Proximity Point Results for MK-Proximal Contractions. Abstract and Applied Analysis, 2012, 2012, 1-14.	0.3	7
53	On positive solutions for a class of singular nonlinear fractional differential equations. Boundary Value Problems, 2012, 2012, .	0.3	7
54	On the Melan equation for suspension bridges. Journal of Fixed Point Theory and Applications, 2014, 16, 159-188.	0.6	7

4

#	Article	IF	CITATIONS
55	A New Approach for the Approximations of Solutions to a Common Fixed Point Problem in Metric Fixed Point Theory. Journal of Function Spaces, 2016, 2016, 1-5.	0.4	7
56	On De La Vallée Poussin-type inequalities in higher dimension and applications. Applied Mathematics Letters, 2018, 86, 264-269.	1.5	7
57	On Lyapunov-type inequalities for a certain class of partial differential equations. Applicable Analysis, 2020, 99, 40-49.	0.6	7
58	On the existence and nonexistence of global solutions for certain semilinear exterior problems with nontrivial Robin boundary conditions. Journal of Differential Equations, 2020, 269, 563-594.	1.1	7
59	Nonexistence results for a class of evolution equations in the Heisenberg group. Fractional Calculus and Applied Analysis, 2015, 18, 717-734.	1.2	6
60	On multivalued weakly Picard operators in partial Hausdorff metric spaces. Fixed Point Theory and Applications, 2015, 2015, .	1.1	6
61	A numerical approach based on Inâ€shifted Legendre polynomials for solving a fractional model of pollution. Mathematical Methods in the Applied Sciences, 2017, 40, 7356-7367.	1.2	6
62	Lyapunov-type inequalities for coupled systems of nonlinear fractional differential equations via a fixed point approach. Journal of Fixed Point Theory and Applications, 2019, 21, 1.	0.6	6
63	On the critical exponent for nonlinear SchrĶdinger equations without gauge invariance in exterior domains. Journal of Mathematical Analysis and Applications, 2019, 469, 188-201.	0.5	6
64	Nonexistence Results for Some Classes of Nonlinear Fractional Differential Inequalities. Journal of Function Spaces, 2020, 2020, 1-8.	0.4	6
65	Instantaneous blow-up for nonlinear Sobolev type equations with potentials on Riemannian manifolds. Communications on Pure and Applied Analysis, 2022, 21, 2065.	0.4	6
66	Nonexistence of solutions to higher order evolution inequalities with nonlocal source term on Riemannian manifolds. Complex Variables and Elliptic Equations, 2023, 68, 1521-1538.	0.4	6
67	Moduli Space Theory of Constant Mean Curvature Hypersurfaces. Advanced Nonlinear Studies, 2009, 9, 29-68.	0.7	5
68	Positive Solutions for Multipoint Boundary Value Problems for Singular Fractional Differential Equations. Journal of Applied Mathematics, 2014, 2014, 1-7.	0.4	5
69	Remarks on the paper: Best proximity point theorems: An exploration of a common solution to approximation and optimization problems. Applied Mathematics and Computation, 2014, 228, 366-370.	1.4	5
70	Nonexistence results for pseudo-parabolic equations in the Heisenberg group. Monatshefte Fur Mathematik, 2016, 180, 255-270.	0.5	5
71	Blow-up Results for Fractional Evolution Problems with Nonlocal Diffusion. Mediterranean Journal of Mathematics, 2016, 13, 3513-3523.	0.4	5
72	Some fractional integral inequalities involving \$\$varvec{m}\$\$ m -convex functions. Aequationes Mathematicae, 2017, 91, 479-490.	0.4	5

#	Article	IF	CITATIONS
73	Lyapunov-type inequalities for nonlinear fractional differential equations and systems involving Caputo-type fractional derivatives. Journal of Inequalities and Applications, 2019, 2019, .	0.5	5
74	A blow-up result for a nonlinear wave equation on manifolds: the critical case. Applicable Analysis, 2023, 102, 1463-1472.	0.6	5
75	On Best Proximity Points under the -Property on Partially Ordered Metric Spaces. Abstract and Applied Analysis, 2013, 2013, 1-6.	0.3	4
76	An optimization problem involving proximal quasi-contraction mappings. Fixed Point Theory and Applications, 2014, 2014, .	1.1	4
77	The Decay of mass for a nonlinear fractional reaction–diffusion equation. Mathematical Methods in the Applied Sciences, 2015, 38, 1369-1378.	1.2	4
78	On Lyapunov-type inequalities for (p , q) \$(p,q)\$ -Laplacian systems. Journal of Inequalities and Applications, 2017, 2017, 100.	0.5	4
79	On the absence of global solutions for some q-difference inequalities. Advances in Difference Equations, 2019, 2019, .	3.5	4
80	Nonexistence of global solutions for a time-fractional damped wave equation in a k-times halved space. Computers and Mathematics With Applications, 2019, 78, 1608-1620.	1.4	4
81	Finite time blow-up for a nonlocal in time nonlinear heat equation in an exterior domain. Applied Mathematics Letters, 2020, 99, 105985.	1.5	4
82	On a Fractional in Time Nonlinear SchrĶdinger Equation with Dispersion Parameter and Absorption Coefficient. Symmetry, 2020, 12, 1197.	1.1	4
83	A fixed point theorem for JS-contraction type mappings with applications to polynomial approximations. Filomat, 2017, 31, 4969-4978.	0.2	4
84	Bifurcations of immersed constant mean curvature hypersurfaces in hyperbolic space. Abhandlungen Aus Dem Mathematischen Seminar Der Universitat Hamburg, 2013, 83, 175-186.	0.2	3
85	From Caristi's Theorem to Ekeland's Variational Principle in0σ-Complete Metric-Like Spaces. Abstract and Applied Analysis, 2014, 2014, 1-7.	0.3	3
86	Nonexistence of global solutions for a class of two-time nonlinear evolution equations. Computers and Mathematics With Applications, 2014, 68, 2028-2035.	1.4	3
87	Magnetic curves on flat para-K"ahler manifolds. Turkish Journal of Mathematics, 2015, 39, 963-969.	0.3	3
88	The study of fixed points for multivalued mappings in a Menger probabilistic metric space endowed with a graph. Fixed Point Theory and Applications, 2015, 2015, .	1.1	3
89	Best proximity point results for MK-proximal contractions on ordered sets. Journal of Fixed Point Theory and Applications, 2015, 17, 439-452.	0.6	3
90	Blow-Up Results for Higher-Order Evolution Differential Inequalities in Exterior Domains. Advanced Nonlinear Studies, 2019, 19, 375-390.	0.7	3

#	Article	IF	CITATIONS
91	A fractional system of Cauchyâ€reaction diffusion equations by adopting Robotnov function. Numerical Methods for Partial Differential Equations, 2020, , .	2.0	3
92	Sufficient Criteria for the Absence of Global Solutions for an Inhomogeneous System of Fractional Differential Equations. Mathematics, 2020, 8, 9.	1.1	3
93	Instantaneous blowâ€up for a fractional in time equation of Sobolev type. Mathematical Methods in the Applied Sciences, 2020, 43, 5645-5652.	1.2	3
94	Nonexistence Results for Higher Order Fractional Differential Inequalities with Nonlinearities Involving Caputo Fractional Derivative. Mathematics, 2021, 9, 1866.	1.1	3
95	Positive solutions of a weakly singular periodic eco-economic system with changing-sign perturbation. Journal of Nonlinear Science and Applications, 2017, 10, 2471-2486.	0.4	3
96	End-to-end gluing of constant mean curvature hypersurfaces. Annales De La Faculté Des Sciences De Toulouse, 2009, 18, 717-737.	0.3	3
97	Nonexistence of Global Solutions to Time-Fractional Damped Wave Inequalities in Bounded Domains with a Singular Potential on the Boundary. Fractal and Fractional, 2021, 5, 258.	1.6	3
98	Nonexistence for nonlinear hyperbolic inequalities in an annulus. Analysis and Mathematical Physics, 2022, 12, .	0.6	3
99	The Wente problem associated to the modified Helmholtz operator. Journal of Mathematical Analysis and Applications, 2008, 339, 332-343.	0.5	2
100	A Note on Best Approximation in 0-Complete Partial Metric Spaces. Abstract and Applied Analysis, 2014, 2014, 1-7.	0.3	2
101	A short note on the equivalence between †best proximity' points and †fixed point' results. Journal of Inequalities and Applications, 2014, 2014, 246.	0.5	2
102	Solvability of a q-fractional integral equation arising in the study of an epidemic model. Advances in Difference Equations, 2017, 2017, .	3.5	2
103	Nonexistence of global solutions for a class of nonlocal in time and space nonlinear evolution equations. Computers and Mathematics With Applications, 2018, 75, 2698-2709.	1.4	2
104	Nonexistence results for systems of parabolic differential inequalities in 2D exterior domains. Asymptotic Analysis, 2019, 113, 29-49.	0.2	2
105	A Lyapunov-Type Inequality for a Laplacian System on a Rectangular Domain with Zero Dirichlet Boundary Conditions. Mathematics, 2019, 7, 850.	1.1	2
106	Absence of Global Solutions for a Fractional in Time and Space Shallow-Water System. Mathematics, 2019, 7, 1127.	1.1	2
107	On the Well-Posedness of a Fractional Model of HIV Infection. Journal of Function Spaces, 2020, 2020, 1-9.	0.4	2
108	Large Time Behavior for Inhomogeneous Damped Wave Equations with Nonlinear Memory. Symmetry, 2020, 12, 1609.	1.1	2

#	Article	IF	CITATIONS
109	New critical behaviors for semilinear wave equations and systems with linear damping terms. Mathematical Methods in the Applied Sciences, 0, , .	1.2	2
110	Generalized convexity and integral inequalities. Mathematical Methods in the Applied Sciences, 2020, , .	1.2	2
111	Some comparison principles for fractional differential equations and systems. Mathematical Methods in the Applied Sciences, 2021, 44, 2405-2415.	1.2	2
112	A general nonexistence result for inhomogeneous semilinear wave equations with double damping and potential terms. Chaos, Solitons and Fractals, 2021, 144, 110673.	2,5	2
113	A general blow-up result for a degenerate hyperbolic inequality in an exterior domain. Bulletin of Mathematical Sciences, 2023, 13, .	0.5	2
114	Blow-up of solutions to fractional differential inequalities involving \$ psi \$-Caputo fractional derivatives of different orders. AIMS Mathematics, 2022, 7, 9189-9205.	0.7	2
115	First and second critical exponents for an inhomogeneous SchrĶdinger equation with combined nonlinearities. Zeitschrift Fur Angewandte Mathematik Und Physik, 2022, 73, .	0.7	2
116	Integrability of detâ^‡u and Evolutionary Wente's Problem Associated to Heat Operator. Chinese Annals of Mathematics Series B, 2007, 28, 527-532.	0.2	1
117	Symmetry-Breaking for Immersed Constant Mean Curvature Hypersurfaces. Advanced Nonlinear Studies, 2009, 9, 243-261.	0.7	1
118	The Wente Problem Associated to the Modified Helmholtz Operator on Weighted Sobolev Spaces. Advanced Nonlinear Studies, 2010, 10, 771-788.	0.7	1
119	Stability of constant mean curvature hypersurfaces of revolution in hyperbolic space. Acta Mathematica Scientia, 2013, 33, 830-838.	0.5	1
120	Positive fixed points for convex and decreasing operators in probabilistic Banach spaces with an application to a two-point boundary value problem. Fixed Point Theory and Applications, 2015, 2015, .	1.1	1
121	A Cone Measure of Noncompactness and Some Generalizations of Darbo's Theorem with Applications to Functional Integral Equations. Journal of Function Spaces, 2016, 2016, 1-11.	0.4	1
122	On the best constant in a Wenteâ€ŧype inequality for the fractional Laplace operator. Mathematical Methods in the Applied Sciences, 2016, 39, 1144-1149.	1.2	1
123	Essential maps and coincidence theory. Applicable Analysis, 2017, 96, 2285-2290.	0.6	1
124	Nonexistence of nontrivial global solutions for nonlocal in time differential inequalities. Mathematical Methods in the Applied Sciences, 2019, 42, 861-870.	1.2	1
125	Blow-up results for a semilinear parabolic differential inequality in an exterior domain. Asymptotic Analysis, 2020, 118, 35-47.	0.2	1
126	Nonexistence of Global Weak Solutions of a System of Nonlinear Wave Equations with Nonlinear Fractional Damping. Journal of Function Spaces, 2020, 2020, 1-8.	0.4	1

#	Article	IF	CITATIONS
127	Nonexistence of Global Weak Solutions for a Nonlinear SchrĶdinger Equation in an Exterior Domain. Symmetry, 2020, 12, 394.	1.1	1
128	An Exterior Parabolic Differential Inequality Under Semilinear Dynamical Boundary Conditions. Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44, 639-660.	0.4	1
129	Finite-time blow-up for inhomogeneous parabolic equations with nonlinear memory. Complex Variables and Elliptic Equations, 2021, 66, 84-93.	0.4	1
130	Blow-up and global existence for semilinear parabolic systems with space-time forcing terms. Chaos, Solitons and Fractals, 2021, 147, 110982.	2.5	1
131	Some Integral Inequalities Involving Metrics. Entropy, 2021, 23, 871.	1.1	1
132	An Investigation of an Integral Equation Involving Convex–Concave Nonlinearities. Mathematics, 2021, 9, 2372.	1.1	1
133	The Class of JS-Contractions in Branciari Metric Spaces. , 2018, , 79-87.		1
134	Global Existence of Solutions to a System of Integral Equations Related to an Epidemic Model. Journal of Function Spaces, 2020, 2020, 1-7.	0.4	1
135	Positive solutions to a class of random operator equations and applications to stochastic integral equations. Nonlinear Analysis: Modelling and Control, 2014, 19, 241-255.	1.1	1
136	Existence results to certain functional equations in probabilistic Banach spaces with an application to integral equations. Journal of Nonlinear Science and Applications, 2016, 09, 1636-1644.	0.4	1
137	A coupled fixed point problem under a finite number of equality constraints in a Banach space partially ordered by a cone. Fixed Point Theory, 2018, 19, 611-624.	0.3	1
138	Stability results for rotationally invariant constant mean curvature surfaces in hyperbolic space. Colloquium Mathematicum, 2012, 126, 269-280.	0.2	1
139	Construction of compact constant mean curvature hypersurfaces with topology. Annales De L'Institut Fourier, 2012, 62, 245-276.	0.2	1
140	Nonexistence of Global Solutions to Higher-Order Time-Fractional Evolution Inequalities with Subcritical Degeneracy. Mathematics, 2021, 9, 2765.	1.1	1
141	Blow-up for semilinear wave equations with time-dependent damping in an exterior domain. Communications on Pure and Applied Analysis, 2020, 19, 3885-3900.	0.4	1
142	Blow-Up of Solutions to Fractional-in-Space Burgers-Type Equations. Fractal and Fractional, 2021, 5, 249.	1.6	1
143	Optimization Problems via Best Proximity Point Analysis. Abstract and Applied Analysis, 2014, 2014, 1-1.	0.3	0
144	A note on some fundamental results in complete gauge spaces and application. Fixed Point Theory and Applications, 2015, 2015, .	1.1	0

#	Article	IF	CITATIONS
145	Bifurcating Nodoids in Hyperbolic Space. Advanced Nonlinear Studies, 2015, 15, 849-865.	0.7	Ο
146	Blow-Up Phenomena for Certain Nonlocal Evolution Equations and Systems. Mathematical Problems in Engineering, 2015, 2015, 1-7.	0.6	0
147	Nonexistence results for some nonlinear nonlocal elliptic inequalities with variable exponents. Mathematical Methods in the Applied Sciences, 2016, 39, 5529-5538.	1.2	0
148	Liouville-type theorems for a system governed by degenerate elliptic operators of fractional orders. Arabian Journal of Mathematics, 2017, 6, 201-211.	0.4	0
149	A New Class of Generalized Convex Functions and Integral Inequalities. Trends in Mathematics, 2018, , 71-89.	0.1	0
150	Corrigendum to "On the absence of global weak solutions for some differential inequalities of Sobolev type in an exterior domain―[<i>Math Meth Appl Sci</i> . 2018;1–15. https://doi.org/10.1002/mma.5080]. Mathematical Methods in the Applied Sciences, 2018, 41, 8344-8344.	1.2	0
151	On the absence of global weak solutions for some differential inequalities of Sobolev type in an exterior domain. Mathematical Methods in the Applied Sciences, 2018, 41, 5293-5307.	1.2	о
152	On Fujita critical exponent for a nonlinear ultraparabolic equation in an exterior domain. Journal of Mathematical Analysis and Applications, 2019, 477, 476-487.	0.5	0
153	On the Study of Fixed Points for a New Class of α-Admissible Mappings. Mathematics, 2019, 7, 1240.	1.1	Ο
154	On the absence of global solutions for quantum versions of Schrödinger equations and systems. Computers and Mathematics With Applications, 2019, 77, 740-751.	1.4	0
155	On Some Integral Inequalities in Quantum Calculus. Journal of Function Spaces, 2020, 2020, 1-10.	0.4	Ο
156	A Nonlinear Integral Equation Related to Infectious Diseases. Journal of Function Spaces, 2020, 2020, 1-7.	0.4	0
157	Instantaneous blowâ€up for a fractionalâ€inâ€ŧime evolution equation arising in plasma theory. Mathematical Methods in the Applied Sciences, 2020, , .	1.2	0
158	Solution blowâ€up for a fractional in time acoustic wave equation. Mathematical Methods in the Applied Sciences, 2020, 43, 6566-6575.	1.2	0
159	Liouville-Type Theorems for Sign-Changing Solutions to Nonlocal Elliptic Inequalities and Systems with Variable-Exponent Nonlinearities. Mediterranean Journal of Mathematics, 2021, 18, 1.	0.4	0
160	On the Equivalence between Two Fixed Point Theorems for Concave-Type Operators. Journal of Function Spaces, 2021, 2021, 1-3.	0.4	0
161	On the critical behavior for inhomogeneous parabolic differential inequalities in the half-space. Applied Mathematics Letters, 2021, 117, 107099.	1.5	0
162	Nonzero Solutions for Nonlinear Systems of Fourth-Order Boundary Value Problems. Journal of Mathematics, 2021, 2021, 1-6.	0.5	0

#	Article	IF	CITATIONS
163	Instantaneous blow-up of solutions to the Cauchy problem for the fractional Khokhlov-Zabolotskaya equation. Open Mathematics, 2020, 18, 1266-1271.	0.5	0
164	On the absence of global solutions to two-times-fractional differential inequalities involving Hadamard-Caputo and Caputo fractional derivatives. AIMS Mathematics, 2022, 7, 5830-5843.	0.7	0
165	On some inequalities involving the function and its fractional derivative. Mathematical Methods in the Applied Sciences, 0, , .	1.2	0
166	Nonexistence for time-fractional wave inequalities on Riemannian manifolds. Discrete and Continuous Dynamical Systems - Series S, 2023, 16, 1517-1536.	0.6	0
167	Fujita critical exponent for hyperbolicâ€ŧype inequalities with mixed nonlinearities on the half space. Mathematical Methods in the Applied Sciences, 0, , .	1.2	0