
Heejin Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5312831/publications.pdf Version: 2024-02-01

HEELINKIM

#	Article	IF	CITATIONS
1	Green and Sustainable Chemical Synthesis Using Flow Microreactors. ChemSusChem, 2011, 4, 331-340.	3.6	380
2	A flow-microreactor approach to protecting-group-free synthesis using organolithium compounds. Nature Communications, 2011, 2, 264.	5.8	221
3	Submillisecond organic synthesis: Outpacing Fries rearrangement through microfluidic rapid mixing. Science, 2016, 352, 691-694.	6.0	206
4	Aryllithium Compounds Bearing Alkoxycarbonyl Groups: Generation and Reactions Using a Microflow System. Angewandte Chemie - International Edition, 2008, 47, 7833-7836.	7.2	155
5	Nitro‣ubstituted Aryl Lithium Compounds in Microreactor Synthesis: Switch between Kinetic and Thermodynamic Control. Angewandte Chemie - International Edition, 2009, 48, 8063-8065.	7.2	141
6	Highly Efficient Photoelectrochemical Hydrogen Generation Using Hierarchical ZnO/WO <i>_x</i> Nanowires Cosensitized with CdSe/CdS. Journal of Physical Chemistry C, 2011, 115, 25429-25436.	1.5	108
7	Generation and reaction of cyano-substituted aryllithium compounds using microreactors. Organic and Biomolecular Chemistry, 2010, 8, 1212.	1.5	103
8	Integrated Micro Flow Synthesis Based on Sequential Br–Li Exchange Reactions of <i>p</i> â€; <i>m</i> â€; and <i>o</i> â€Dibromobenzenes. Chemistry - an Asian Journal, 2007, 2, 1513-1523.	1.7	99
9	A Flow Microreactor System Enables Organolithium Reactions without Protecting Alkoxycarbonyl Groups. Chemistry - A European Journal, 2010, 16, 11167-11177.	1.7	94
10	Coexistence of unipolar and bipolar resistive switching characteristics in ZnO thin films. Journal of Applied Physics, 2010, 108, .	1.1	89
11	Hybrid-Type Quantum-Dot Cosensitized ZnO Nanowire Solar Cell with Enhanced Visible-Light Harvesting. ACS Applied Materials & Interfaces, 2013, 5, 268-275.	4.0	85
12	A highly efficient light capturing 2D (nanosheet)–1D (nanorod) combined hierarchical ZnO nanostructure for efficient quantum dot sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 2109.	1.3	68
13	Integrated Oneâ€Flow Synthesis of Heterocyclic Thioquinazolinones through Serial Microreactions with Two Organolithium Intermediates. Angewandte Chemie - International Edition, 2015, 54, 1877-1880.	7.2	66
14	"Impossible―chemistries based on flow and micro. Journal of Flow Chemistry, 2017, 7, 60-64.	1.2	53
15	Highly Durable and Efficient Quantum Dot-Sensitized Solar Cells Based on Oligomer Gel Electrolytes. ACS Applied Materials & Interfaces, 2014, 6, 11245-11253.	4.0	51
16	Improvement of photocurrent generation of Ag2S sensitized solar cell through co-sensitization with CdS. Applied Physics Letters, 2013, 103, .	1.5	50
17	Highly Efficient Photoelectrochemical Hydrogen Generation Using a Quantum Dot Coupled Hierarchical ZnO Nanowires Array. ACS Applied Materials & Interfaces, 2013, 5, 13258-13264.	4.0	44
18	Synthesis of Functionalized Aryl Fluorides Using Organolithium Reagents in Flow Microreactors. Chemistry - an Asian Journal, 2013, 8, 705-708.	1.7	41

Неејін Кім

#	Article	IF	CITATIONS
19	Flash synthesis of TAC-101 and its analogues from 1,3,5-tribromobenzene using integrated flow microreactor systems. RSC Advances, 2011, 1, 758.	1.7	38
20	A Catalystâ€Free Amination of Functional Organolithium Reagents by Flow Chemistry. Angewandte Chemie - International Edition, 2018, 57, 4063-4066.	7.2	33
21	Freestanding CdS nanotube films as efficient photoanodes for photoelectrochemical cells. Journal of Materials Chemistry A, 2013, 1, 9587.	5.2	25
22	From <i>p</i> â€Xylene to Ibuprofen in Flow: Three‣tep Synthesis by a Unified Sequence of Chemoselective Câ^'H Metalations. Chemistry - A European Journal, 2019, 25, 11641-11645.	1.7	25
23	Flowâ€Assisted Synthesis of [10]Cycloparaphenylene through Serial Microreactions under Mild Conditions. Angewandte Chemie - International Edition, 2016, 55, 1422-1426.	7.2	24
24	Fabrication of a novel hierarchical assembly of ZnO nanowires on WOx nanowhiskers for highly efficient field electron emission. Journal of Materials Chemistry, 2011, 21, 13458.	6.7	23
25	Harnessing [1,4], [1,5], and [1,6] Anionic Friesâ€ŧype Rearrangements by Reactionâ€Time Control in Flow. Angewandte Chemie - International Edition, 2017, 56, 7863-7866.	7.2	23
26	Anti-Human Rhinoviral Activity of Polybromocatechol Compounds Isolated from the Rhodophyta, Neorhodomela aculeata. Marine Drugs, 2012, 10, 2222-2233.	2.2	20
27	Control of tandem isomerizations: flow-assisted reactions of <i>o</i> -lithiated aryl benzyl ethers. Chemical Communications, 2018, 54, 547-550.	2.2	20
28	Enhanced Controllability of Fries Rearrangements Using Highâ€Resolution 3Dâ€Printed Metal Microreactor with Circular Channel. Small, 2019, 15, e1905005.	5.2	20
29	A monolithic and flexible fluoropolymer film microreactor for organic synthesis applications. Lab on A Chip, 2014, 14, 4270-4276.	3.1	19
30	Microfluidicsâ€Assisted Synthesis of Hierarchical Cu ₂ O Nanocrystal as C ₂ ‣elective CO ₂ Reduction Electrocatalyst. Small Methods, 2022, 6, e2200074.	4.6	19
31	A pressure-tolerant polymer microfluidic device fabricated by the simultaneous solidification-bonding method and flash chemistry application. Lab on A Chip, 2014, 14, 4263-4269.	3.1	17
32	A Catalystâ€Free Amination of Functional Organolithium Reagents by Flow Chemistry. Angewandte Chemie, 2018, 130, 4127-4130.	1.6	15
33	Memory of Chirality in a Flowâ€Based System: Enantioselective Synthesis of Quaternary αâ€Amino Acids Using Flow Microreactors. European Journal of Organic Chemistry, 2018, 2018, 6754-6757.	1.2	15
34	Continuous-flow Si–H functionalizations of hydrosilanes <i>via</i> sequential organolithium reactions catalyzed by potassium <i>tert</i> -butoxide. Green Chemistry, 2021, 23, 1193-1199.	4.6	14
35	Multilayered film microreactors fabricated by a one-step thermal bonding technique with high reproducibility and their applications. Lab on A Chip, 2016, 16, 977-983.	3.1	13
36	Sequential double C–H functionalization of 2,5-norbornadiene in flow. Reaction Chemistry and Engineering, 2018, 3, 635-639.	1.9	12

Ηεειίν Κιμ

#	Article	IF	CITATIONS
37	Flowâ€Assisted Synthesis of [10]Cycloparaphenylene through Serial Microreactions under Mild Conditions. Angewandte Chemie, 2016, 128, 1444-1448.	1.6	8
38	Pd ₃ Pb Nanosponges for Selective Conversion of Furfural to Furfuryl Alcohol under Mild Condition. Small Methods, 2021, 5, e2100400.	4.6	8
39	Regioselective Synthesis of α-Functional Stilbenes via Precise Control of Rapid <i>cis</i> – <i>trans</i> Isomerization in Flow. Organic Letters, 2021, 23, 2904-2910.	2.4	6
40	Scalable Subsecond Synthesis of Drug Scaffolds via Aryllithium Intermediates by Numbered-up 3D-Printed Metal Microreactors. ACS Central Science, 2022, 8, 43-50.	5.3	6
41	Direct C–H metallation of tetrahydrofuran and application in flow. , 2022, 1, 558-564.		6
42	Harnessing [1,4], [1,5], and [1,6] Anionic Friesâ€ŧype Rearrangements by Reactionâ€Time Control in Flow. Angewandte Chemie, 2017, 129, 7971-7974.	1.6	5
43	Integrated Synthesis Using Isothiocyanate-Substituted Aryllithiums by Flow Chemistry. Synlett, 2020, 31, 1899-1902.	1.0	5
44	Photo-driven autonomous hydrogen generation system based on hierarchically shelled ZnO nanostructures. Applied Physics Letters, 2013, 103, 223903.	1.5	4
45	Functionalization of Organotrifluoroborates via Cu-Catalyzed C-N Coupling Reaction. Bulletin of the Korean Chemical Society, 2013, 34, 42-48.	1.0	3
46	Microfluidicsâ€Assisted Synthesis of Hierarchical Cu ₂ O Nanocrystal as C ₂ â€Selective CO ₂ Reduction Electrocatalyst (Small Methods 5/2022). Small Methods, 2022, 6, .	4.6	1
47	Innenrücktitelbild: Flowâ€Assisted Synthesis of [10]Cycloparaphenylene through Serial Microreactions under Mild Conditions (Angew. Chem. 4/2016). Angewandte Chemie, 2016, 128, 1591-1591.	1.6	О