Jered B Haun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5312830/publications.pdf

Version: 2024-02-01

			394421	4	77307
	30	2,164	19		29
	papers	citations	h-index		g-index
=					
	31	31	31		3517
	all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Magnetic nanoparticle biosensors. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2, 291-304.	6.1	417
2	Fast and Sensitive Pretargeted Labeling of Cancer Cells through a Tetrazine/ <i>trans</i> cyclooctene Cycloaddition. Angewandte Chemie - International Edition, 2009, 48, 7013-7016.	13.8	341
3	Bioorthogonal chemistry amplifies nanoparticle binding and enhances the sensitivity of cell detection. Nature Nanotechnology, 2010, 5, 660-665.	31.5	319
4	Micro-NMR for Rapid Molecular Analysis of Human Tumor Samples. Science Translational Medicine, 2011, 3, 71ra16.	12.4	191
5	Neutrophil Traction Stresses are Concentrated in the Uropod during Migration. Biophysical Journal, 2007, 92, L58-L60.	0.5	103
6	Quantifying Nanoparticle Adhesion Mediated by Specific Molecular Interactions. Langmuir, 2008, 24, 8821-8832.	3. 5	90
7	Leuko-polymersomes. Faraday Discussions, 2008, 139, 129.	3.2	85
8	Tunable Leuko-polymersomes That Adhere Specifically to Inflammatory Markers. Langmuir, 2010, 26, 14089-14096.	3.5	81
9	Probing Intracellular Biomarkers and Mediators of Cell Activation Using Nanosensors and Bioorthogonal Chemistry. ACS Nano, 2011, 5, 3204-3213.	14.6	67
10	Phenotypic Analysis of Stromal Vascular Fraction after Mechanical Shear Reveals Stress-Induced Progenitor Populations. Plastic and Reconstructive Surgery, 2016, 138, 237e-247e.	1.4	62
11	Carboxymethylated Polyvinyl Alcohol Stabilizes Doped Ferrofluids for Biological Applications. Advanced Materials, 2010, 22, 5168-5172.	21.0	59
12	Enhancing Reactivity for Bioorthogonal Pretargeting by Unmasking Antibody-Conjugated <i>trans</i> -Cyclooctenes. Bioconjugate Chemistry, 2015, 26, 352-360.	3.6	47
13	Microfluidic device for mechanical dissociation of cancer cell aggregates into single cells. Lab on A Chip, 2015, 15, 339-350.	6.0	42
14	Interplay between Shear Stress and Adhesion on Neutrophil Locomotion. Biophysical Journal, 2007, 92, 632-640.	0.5	36
15	Microfluidic channel optimization to improve hydrodynamic dissociation of cell aggregates and tissue. Scientific Reports, 2018, 8, 2774.	3.3	33
16	Microfluidic platform accelerates tissue processing into single cells for molecular analysis and primary culture models. Nature Communications, 2021, 12, 2858.	12.8	29
17	Microfluidic filter device with nylon mesh membranes efficiently dissociates cell aggregates and digested tissue into single cells. Lab on A Chip, 2018, 18, 2776-2786.	6.0	24
18	Molecular Detection of Biomarkers and Cells Using Magnetic Nanoparticles and Diagnostic Magnetic Resonance. Methods in Molecular Biology, 2011, 726, 33-49.	0.9	21

#	Article	IF	CITATIONS
19	Bioorthogonal chemistries for nanomaterial conjugation and targeting. Nanotechnology Reviews, 2013, 2, 215-227.	5.8	21
20	Macrophage secretion heterogeneity in engineered microenvironments revealed using a microwell platform. Integrative Biology (United Kingdom), 2016, 8, 751-760.	1.3	19
21	Pushing the limits of detection for proteins secreted from single cells using quantum dots. Analyst, The, 2019, 144, 980-989.	3.5	17
22	Quantifying and controlling bond multivalency for advanced nanoparticle targeting to cells. Nano Convergence, 2021, 8, 38.	12.1	16
23	Microfluidic device for rapid digestion of tissues into cellular suspensions. Lab on A Chip, 2017, 17, 3300-3309.	6.0	13
24	Using Engineered Single-Chain Antibodies to Correlate Molecular Binding Properties and Nanoparticle Adhesion Dynamics. Langmuir, 2011, 27, 13701-13712.	3.5	9
25	Engineering Therapeutic Nanocarriers with Optimal Adhesion for Targeting. Journal of Adhesion, 2010, 86, 131-159.	3.0	8
26	Evolution of Multivalent Nanoparticle Adhesion via Specific Molecular Interactions. Langmuir, 2016, 32, 13124-13136.	3.5	6
27	Multiplexed Detection of Secreted Cytokines at near-Molecular Resolution Elucidates Macrophage Polarization Heterogeneity. Analytical Chemistry, 2022, 94, 658-668.	6.5	4
28	Optimization of Mechanical Tissue Dissociation Using an Integrated Microfluidic Device for Improved Generation of Single Cells Following Digestion. Frontiers in Bioengineering and Biotechnology, 2022, 10, 841046.	4.1	3
29	Extracting multivalent detachment rates from heterogeneous nanoparticle populations. Physical Chemistry Chemical Physics, 2018, 20, 21430-21440.	2.8	1
30	Microfluidic Device Technologies for Digestion, Disaggregation, and Filtration of Tissue Samples for Single Cell Applications. Methods in Molecular Biology, 2022, 2394, 81-92.	0.9	0