
Prof G C Shit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/531275/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mathematical modeling of heat and mass transfer effects on MHD peristaltic propulsion of two-phase flow through a Darcy-Brinkman-Forchheimer porous medium. Advanced Powder Technology, 2018, 29, 1189-1197.	2.0	131
2	Peristaltic transport of MHD flow and heat transfer in an asymmetric channel: Effects of variable viscosity, velocity-slip and temperature jump. AEJ - Alexandria Engineering Journal, 2015, 54, 691-704.	3.4	106
3	Entropy generation on MHD flow and convective heat transfer in a porous medium of exponentially stretching surface saturated by nanofluids. Advanced Powder Technology, 2017, 28, 1519-1530.	2.0	92
4	Entropy generation on electro-osmotic flow pumping by a uniform peristaltic wave under magnetic environment. Energy, 2017, 128, 649-660.	4.5	88
5	Flow and heat transfer of a MHD viscoelastic fluid in a channel with stretching walls: Some applications to haemodynamics. Computers and Fluids, 2008, 37, 1-11.	1.3	83
6	Electromagnetohydrodynamic flow of blood and heat transfer in a capillary with thermal radiation. Journal of Magnetism and Magnetic Materials, 2015, 378, 143-151.	1.0	77
7	A new deterministic model of strange stars. European Physical Journal C, 2014, 74, 1.	1.4	76
8	Entropy generation and Joule heating of two layered electroosmotic flow in the peristaltically induced micro-channel. International Journal of Mechanical Sciences, 2019, 153-154, 430-444.	3.6	66
9	Blood flow through arteries in a pathological state: A theoretical study. International Journal of Engineering Science, 2006, 44, 662-671.	2.7	63
10	ROLE OF SLIP VELOCITY IN BLOOD FLOW THROUGH STENOSED ARTERIES: A NON-NEWTONIAN MODEL. Journal of Mechanics in Medicine and Biology, 2007, 07, 337-353.	0.3	61
11	Flow of a biomagnetic viscoelastic fluid: application to estimation of blood flow in arteries during electromagnetic hyperthermia, a therapeutic procedure for cancer treatment. Applied Mathematics and Mechanics (English Edition), 2010, 31, 1405-1420.	1.9	59
12	PULSATILE FLOW AND HEAT TRANSFER OF A MAGNETO-MICROPOLAR FLUID THROUGH A STENOSED ARTERY UNDER THE INFLUENCE OF BODY ACCELERATION. Journal of Mechanics in Medicine and Biology, 2011, 11, 643-661.	0.3	59
13	Electro-osmotic flow of power-law fluid and heat transfer in a micro-channel with effects of Joule heating and thermal radiation. Physica A: Statistical Mechanics and Its Applications, 2016, 462, 1040-1057.	1.2	57
14	Electro-magnetohydrodynamic Flow of Biofluid Induced by Peristaltic Wave: A Non-newtonian Model. Journal of Bionic Engineering, 2016, 13, 436-448.	2.7	57
15	Pulsatile flow of blood and heat transfer with variable viscosity under magnetic and vibration environment. Journal of Magnetism and Magnetic Materials, 2015, 388, 106-115.	1.0	54
16	Biomagnetic viscoelastic fluid flow over a stretching sheet. Applied Mathematics and Computation, 2009, 210, 350-361.	1.4	51
17	Joule heating effects on electromagnetohydrodynamic flow through a peristaltically induced micro-channel with different zeta potential and wall slip. Physica A: Statistical Mechanics and Its Applications, 2017, 482, 458-476.	1.2	51
18	MATHEMATICAL MODELING OF BLOOD FLOW IN A POROUS VESSEL HAVING DOUBLE STENOSES IN THE PRESENCE OF AN EXTERNAL MAGNETIC FIELD. International Journal of Biomathematics, 2011, 04, 207-225.	1.5	49

#	Article	IF	CITATIONS
19	Joule heating and zeta potential effects on peristaltic blood flow through porous micro vessels altered by electrohydrodynamic. Microvascular Research, 2018, 117, 74-89.	1.1	48
20	Electroosmotic oscillatory flow of micropolar fluid in microchannels: application to dynamics of blood flow in microfluidic devices. Applied Mathematics and Mechanics (English Edition), 2014, 35, 749-766.	1.9	46
21	Role of slip velocity on peristaltic transport of couple stress fluid through an asymmetric non-uniform channel: Application to digestive system. Journal of Molecular Liquids, 2016, 221, 305-315.	2.3	46
22	Two-layer electro-osmotic flow and heat transfer in a hydrophobic micro-channel with fluid–solid interfacial slip and zeta potential difference. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506, 535-549.	2.3	45
23	Numerical investigation of MHD flow of blood and heat transfer in a stenosed arterial segment. Journal of Magnetism and Magnetic Materials, 2017, 424, 137-147.	1.0	43
24	A NUMERICAL MODEL FOR THE MAGNETOHYDRODYNAMIC FLOW OF BLOOD IN A POROUS CHANNEL. Journal of Mechanics in Medicine and Biology, 2011, 11, 547-562.	0.3	41
25	Hydromagnetic flow and heat transfer of a second-grade viscoelastic fluid in a channel with oscillatory stretching walls: application to the dynamics of blood flow. Journal of Engineering Mathematics, 2011, 69, 91-100.	0.6	41
26	Modeling and simulation of blood flow with magnetic nanoparticles as carrier for targeted drug delivery in the stenosed artery. European Journal of Mechanics, B/Fluids, 2020, 83, 42-57.	1.2	41
27	Electro-osmotically driven MHD flow and heat transfer in micro-channel. Physica A: Statistical Mechanics and Its Applications, 2016, 449, 437-454.	1.2	40
28	Electro-osmotic flow of a viscoelastic fluid in a channel : Applications to physiological fluid mechanics. Applied Mathematics and Computation, 2011, 217, 7932-7939.	1.4	39
29	Effects of slip velocity on rotating electro-osmotic flow in a slowly varying micro-channel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 489, 249-255.	2.3	38
30	Caputo–Fabrizio fractional order model on MHD blood flow with heat and mass transfer through a porous vessel in the presence of thermal radiation. Physica A: Statistical Mechanics and Its Applications, 2020, 540, 123149.	1.2	38
31	Flow of a Biomagnetic Visco-Elastic Fluid in a Channel With Stretching Walls. Journal of Applied Mechanics, Transactions ASME, 2009, 76, .	1.1	35
32	PERISTALTIC TRANSPORT OF A PHYSIOLOGICAL FLUID IN AN ASYMMETRIC POROUS CHANNEL IN THE PRESENCE OF AN EXTERNAL MAGNETIC FIELD. Journal of Mechanics in Medicine and Biology, 2008, 08, 507-525.	0.3	33
33	Entropy analysis on unsteady MHD biviscosity nanofluid flow with convective heat transfer in a permeable radiative stretchable rotating disk. Chinese Journal of Physics, 2021, 74, 239-255.	2.0	33
34	Transport of magneto-nanoparticles during electro-osmotic flow in a micro-tube in the presence of magnetic field for drug delivery application. Journal of Magnetism and Magnetic Materials, 2017, 442, 319-328.	1.0	32
35	Hydromagnetic effect on inclined peristaltic flow of a couple stress fluid. AEJ - Alexandria Engineering Journal, 2014, 53, 949-958.	3.4	31
36	Fractional order model for thermochemical flow of blood with Dufour and Soret effects under magnetic and vibration environment. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111395.	2.5	31

#	Article	IF	CITATIONS
37	Impact of drug carrier shape, size, porosity and blood rheology on magnetic nanoparticle-based drug delivery in a microvessel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 639, 128370.	2.3	29
38	THEORETICAL ANALYSIS OF BLOOD FLOW THROUGH AN ARTERIAL SEGMENT HAVING MULTIPLE STENOSES. Journal of Mechanics in Medicine and Biology, 2008, 08, 265-279.	0.3	28
39	Pulsatile flow and heat transfer of blood in an overlapping vibrating atherosclerotic artery: A numerical study. Mathematics and Computers in Simulation, 2019, 166, 432-450.	2.4	28
40	Effect of heat transfer on unsteady MHD flow of blood in a permeable vessel in the presence of non-uniform heat source. AEJ - Alexandria Engineering Journal, 2016, 55, 2023-2033.	3.4	27
41	MHD graphene-polydimethylsiloxane Maxwell nanofluid flow in a squeezing channel with thermal radiation effects. Applied Mathematics and Mechanics (English Edition), 2019, 40, 1269-1284.	1.9	27
42	Effect of induced magnetic field on peristaltic flow of a micropolar fluid in an asymmetric channel. International Journal for Numerical Methods in Biomedical Engineering, 2010, 26, 1380-1403.	1.0	24
43	Could wormholes form in dark matter galactic halos?. Astrophysics and Space Science, 2016, 361, 1.	0.5	24
44	Entropy Analysis on Unsteady MHD Flow of Casson Nanofluid over a Stretching Vertical Plate with Thermal Radiation Effect. International Journal of Applied and Computational Mathematics, 2020, 6, 1.	0.9	24
45	Transportation of ionic liquids in a porous micro-channel induced by peristaltic wave with Joule heating and wall-slip conditions. Chemical Engineering Science, 2017, 171, 545-557.	1.9	23
46	Entropy generation on electromagnetohydrodynamic flow through a porous asymmetric micro-channel. European Journal of Mechanics, B/Fluids, 2019, 77, 135-147.	1.2	23
47	Effects of thermal radiation on MHD viscous fluid flow and heat transfer over nonlinear shrinking porous sheet. Applied Mathematics and Mechanics (English Edition), 2011, 32, 677-688.	1.9	21
48	Mathematical Modelling of Blood Flow through a Tapered Overlapping Stenosed Artery with Variable Viscosity. Applied Bionics and Biomechanics, 2014, 11, 185-195.	0.5	21
49	Magnetic field interaction with blood flow and heat transfer through diseased artery having Abdominal Aortic Aneurysm. European Journal of Mechanics, B/Fluids, 2018, 71, 1-14.	1.2	21
50	Entropy analysis of thermo-solutal stratification of nanofluid flow containing gyrotactic microorganisms over an inclined radiative stretching cylinder. Thermal Science and Engineering Progress, 2022, 34, 101379.	1.3	21
51	EFFECT OF INDUCED MAGNETIC FIELD ON BLOOD FLOW THROUGH A CONSTRICTED CHANNEL: AN ANALYTICAL APPROACH. Journal of Mechanics in Medicine and Biology, 2016, 16, 1650030.	0.3	20
52	Fractional order model of thermo-solutal and magnetic nanoparticles transport for drug delivery applications. Colloids and Surfaces B: Biointerfaces, 2021, 203, 111754.	2.5	19
53	Electrothermal analysis in two-layered couple stress fluid flow in an asymmetric microchannel via peristaltic pumping. Journal of Thermal Analysis and Calorimetry, 2021, 144, 1325-1342.	2.0	18
54	Convective Heat Transfer and MHD Viscoelastic Nanofluid Flow Induced by a Stretching Sheet. International Journal of Applied and Computational Mathematics, 2016, 2, 593-608.	0.9	17

#	Article	IF	CITATIONS
55	Thermo-fluidic transport of electromagnetohydrodynamic flow in a corrugated porous medium microchannel. European Physical Journal Plus, 2021, 136, 1.	1.2	16
56	Electro-osmotic flow and heat transfer in a slowly varying asymmetric micro-channel with Joule heating effects. Fluid Dynamics Research, 2018, 50, 065502.	0.6	15
57	Study of galactic rotation curves in wormhole spacetime. Astrophysics and Space Science, 2016, 361, 1.	0.5	14
58	Computational modeling of MHD flow of blood and heat transfer enhancement in a slowly varying arterial segment. International Journal of Heat and Fluid Flow, 2018, 70, 237-246.	1.1	14
59	Heat transfer and entropy generation in a MHD Couette–Poiseuille flow through a microchannel with slip, suction–injection and radiation. Journal of Thermal Analysis and Calorimetry, 2022, 147, 4253-4273.	2.0	13
60	THERMODYNAMIC AND MAGNETOHYDRODYNAMIC ANALYSIS OF BLOOD FLOW CONSIDERING ROTATION OF MICRO-PARTICLES OF BLOOD. Journal of Mechanics in Medicine and Biology, 2013, 13, 1350013.	0.3	12
61	Slip Effects on Pulsatile Flow of Blood through a Stenosed Arterial Segment under Periodic Body Acceleration. ISRN Biomedical Engineering, 2013, 2013, 1-10.	0.4	12
62	Effect of Slip Velocity on Peristaltic Transport of a Magneto-Micropolar Fluid Through a Porous Non-uniform Channel. International Journal of Applied and Computational Mathematics, 2015, 1, 121-141.	0.9	12
63	Effect of heat transfer on rotating electroosmotic flow through a micro-vessel: haemodynamical applications. Heat and Mass Transfer, 2016, 52, 1549-1557.	1.2	12
64	Unsteady Flow and Heat Transfer of a MHD Micropolar Fluid Over a Porous Stretching Sheet in the Presence of Thermal Radiation. Journal of Mechanics, 2013, 29, 559-568.	0.7	11
65	ADOMIAN DECOMPOSITION METHOD FOR MAGNETOHYDRODYNAMIC FLOW OF BLOOD INDUCED BY PERISTALTIC WAVES. Journal of Mechanics in Medicine and Biology, 2017, 17, 1750007.	0.3	11
66	Electroosmotic flow of a fractional secondâ€grade fluid with interfacial slip and heat transfer in the microchannel when exposedÂto a magnetic field. Heat Transfer, 2021, 50, 2643-2666.	1.7	11
67	Electromagnetohydrodynamic thermo-fluidic transport in a porous microchannel with wall roughness. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650, 129336.	2.3	11
68	MATHEMATICAL ANALYSIS OF BLOOD FLOW THROUGH AN ARTERIAL SEGMENT WITH TIMEâ€ÐEPENDENT STENOSIS. Mathematical Modelling and Analysis, 2008, 13, 401-412.	0.7	10
69	Effect of thermal relaxation time on heat transfer in a two layer composite system of living tissues. International Communications in Heat and Mass Transfer, 2015, 61, 96-101.	2.9	10
70	Computational model on magnetothermoelastic analysis of a rotating cylinder using finite difference method. Waves in Random and Complex Media, 2022, 32, 1654-1671.	1.6	10
71	Entropy analysis of unsteady MHD threeâ€dimensional flow of Williamson nanofluid over a convectively heated stretching sheet. Heat Transfer, 2022, 51, 2034-2062.	1.7	9
72	Mathematical modeling of electrothermal couple stress nanofluid flow and entropy in a porous microchannel under injection process. Applied Mathematics and Computation, 2022, 426, 127110.	1.4	8

#	Article	IF	CITATIONS
73	Temperature Response in a Living Tissue with Different Heating Source at the Skin Surface Under Relaxation Time. International Journal of Applied and Computational Mathematics, 2017, 3, 381-394.	0.9	7
74	MULTIPHASE FLOW OF BLOOD THROUGH ARTERIES WITH A BRANCH CAPILLARY: A THEORETICAL STUDY. Journal of Mechanics in Medicine and Biology, 2007, 07, 395-417.	0.3	6
75	Non-Newtonian flow of blood in a catheterized bifurcated stenosed artery. Journal of Bionic Engineering, 2018, 15, 173-184.	2.7	6
76	Spatio-temporal evolution of magnetohydrodynamic blood flow and heat dynamics through a porous medium in a wavy-walled artery. Computers in Biology and Medicine, 2021, 135, 104595.	3.9	6
77	Computational modeling of the effect of blood flow and dual phase lag on tissue temperature during tumor treatment by magnetic hyperthermia. Mathematics and Computers in Simulation, 2021, 188, 389-403.	2.4	5
78	Mathematical model to verify the role of magnetic field on blood flow and its impact on thermal behavior of biological tissue for tumor treatment. Biomedical Physics and Engineering Express, 2020, 6, 015032.	0.6	5
79	Role of Slip Velocity on the Oscillatory Flow of Blood Through a Porous Vessel in the Presence of Heat Source and Chemical Reaction. Journal of Mechanics, 2014, 30, 209-218.	0.7	4
80	Oscillatory blood flow through a capillary in presence of thermal radiation. International Journal of Biomathematics, 2015, 08, 1550014.	1.5	3
81	The Riemann problem for non-ideal isentropic compressible two phase flows. International Journal of Non-Linear Mechanics, 2016, 81, 197-206.	1.4	3
82	Differential Transform Method for Unsteady Magnetohydrodynamic Nanofluid Flow in the Presence of Thermal Radiation. Journal of Nanofluids, 2018, 8, 998-1009.	1.4	3
83	Computational Modelling of Blood Flow Development and Its Characteristics in Magnetic Environment. Modelling and Simulation in Engineering, 2013, 2013, 1-12.	0.4	2
84	Modeling of Blood Flow in a Constricted Porous Vessel Under Magnetic Environment: An Analytical Approach. International Journal of Applied and Computational Mathematics, 2015, 1, 219-234.	0.9	2
85	Gravitational collapse of a circularly symmetric star in an anti-de Sitter spacetime. Astrophysics and Space Science, 2015, 359, 1.	0.5	2
86	Solution to the Riemann problem for a five-equation model of multiphase flows in non-conservative form. Sadhana - Academy Proceedings in Engineering Sciences, 2016, 41, 1099-1109.	0.8	1
87	DPL Model for Hyperthermia Treatment of Cancerous Cells Using Laser Heating Technique: A Numerical Study. Advances in Intelligent Systems and Computing, 2021, , 357-370.	0.5	1
88	Entropy Generation of Electrothermal Nanofluid Flow Between Two Permeable Walls Under Injection Process. Journal of Nanofluids, 2022, 11, 714-727.	1.4	1