Asmaa Said Morshedy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5312501/publications.pdf

Version: 2024-02-01

759055 839398 18 355 12 18 citations h-index g-index papers 18 18 18 291 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis and kinetics study of trimethylolpropane fatty acid triester from oleic acid methyl ester as potential biolubricant. Biomass Conversion and Biorefinery, 2023, 13, 1645-1657.	2.9	8
2	Elevated CO-free hydrogen productivity through ethanol steam reforming using cubic Co-Nanoparticles based MgO catalyst. Environmental Technology (United Kingdom), 2022, 43, 1860-1869.	1.2	6
3	The production of clean diesel fuel by facile sun light photocatalytic desulfurization process using Cd-based diacetate as a novel liquid photocatalyst. Journal of Cleaner Production, 2021, 279, 123629.	4.6	16
4	Increased production of hydrogen with in situ CO2 capture through the process of water splitting using magnetic core/shell structures as novel photocatalysts. Environmental Science and Pollution Research, 2021, 28, 3566-3578.	2.7	14
5	Highly efficient Imprinted Polymer Nanocomposites for photocatalytic desulfurization of real diesel fuel. Environmental Technology and Innovation, 2021, 21, 101206.	3.0	18
6	Solid waste sub-driven acidic mesoporous activated carbon structures for efficient uranium capture through the treatment of industrial phosphoric acid. Environmental Technology and Innovation, 2021, 21, 101363.	3.0	17
7	Tailoring the structural, thermal, photoluminescence, and optical properties of flexible PVA/Gd2O3 nanocomposite films by gamma irradiation. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	10
8	Functionalized aminophosphonate chitosan-magnetic nanocomposites for Cd(II) removal from aqueous solutions: Performance and mechanisms of sorption. Applied Surface Science, 2021, 561, 150069.	3.1	29
9	Highly Efficient Visibleâ€Lightâ€Induced Photocatalytic Hydrogen Production via Water Splitting using FeCl ₃ â€Based Ionic Liquids as Homogeneous Photocatalysts. ChemSusChem, 2020, 13, 6602-6612.	3.6	6
10	Hydrogen Production and In Situ Storage through Process of Water Splitting Using Mono/Binary Metal–Organic Framework (MOF) Structures as New Chief Photocatalysts. Energy & Samp; Fuels, 2020, 34, 11660-11669.	2.5	37
11	Waste generated bio-char supported co-nanoparticles of nickel and cobalt oxides for efficient adsorption of uranium and organic pollutants from industrial phosphoric acid. Journal of Radioanalytical and Nuclear Chemistry, 2019, 320, 741-755.	0.7	21
12	Novel Calcium Carbonate-titania nanocomposites for enhanced sun light photo catalytic desulfurization process. Journal of Environmental Management, 2019, 250, 109462.	3.8	28
13	Conversion of biomass residual to acid-modified bio-chars for efficient adsorption of organic pollutants from industrial phosphoric acid: an experimental, kinetic and thermodynamic study. International Journal of Environmental Analytical Chemistry, 2019, 99, 1211-1234.	1.8	26
14	Synthesis of polyaminophosphonic acid-functionalized poly(glycidyl methacrylate) for the efficient sorption of La(III) and Y(III). Chemical Engineering Journal, 2019, 375, 121932.	6.6	46
15	A new route for the synthesis of self-acidified and granulated mesoporous alumina catalyst with superior Lewis acidity and its application in cumene conversion. Journal of Materials Science, 2019, 54, 5424-5444.	1.7	10
16	New Conduct in the Adsorptive Removal of Sulfur Compounds by New Nickel–Molybdenum Adsorbent. Industrial & Description of Sulfur Compounds by New Nickel–Molybdenum Adsorbent. Industrial & Description of Sulfur Compounds by New Nickel–Molybdenum Adsorbent. Industrial & Description of Sulfur Compounds by New Nickel–Molybdenum Adsorbent. Industrial & Description of Sulfur Compounds by New Nickel–Molybdenum Adsorbent. Industrial & Description of Sulfur Compounds by New Nickel–Molybdenum Adsorbent. Industrial & Description of Sulfur Compounds by New Nickel–Molybdenum Adsorbent. Industrial & Description of Sulfur Compounds by New Nickel–Molybdenum Adsorbent. Industrial & Description of Sulfur Compounds by New Nickel–Molybdenum Adsorbent. Industrial & Description of Sulfur Compounds by New Nickel–Molybdenum Adsorbent. Industrial & Description of Sulfur Compounds by New Nickel–Molybdenum Adsorbent. Industrial & Description of Sulfur Compounds by New Nickel–Molybdenum Adsorbent. Industrial & Description of Sulfur Compounds by New Nickel—Molybdenum Adsorbent. Industrial & Description of Sulfur Compounds by New Nickel†"Molybdenum Adsorbent" (New Nickel†"Molybdenum Adsorbent") (New Nickel†"Molybdenum Adsorbenum Adsorbent") (New Nickel†"Molybde	1.8	24
17	Photoassisted Desulfurization Induced by Visible-Light Irradiation for the Production of Ultra-Low Sulfur Diesel Fuel Using Nanoparticles of CdO. Journal of Physical Chemistry C, 2016, 120, 26350-26362.	1.5	21
18	Anti-Hepatitis B Virus Activity of New 1,2,4-Triazol-2-yl- and 1,3,4-Oxadiazol-2-yl-2-pyridinone Derivatives. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2008, 63, 667-674.	0.6	18