
Wei Qin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5312423/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative and rapid detection of explosives using an efficient luminogen with aggregation-induced emission characteristics. Sensors and Actuators B: Chemical, 2020, 302, 127201.	7.8	23
2	Alternating Vinylarene–Carbon Monoxide Copolymers: Simple and Efficient Nonconjugated Luminescent Macromolecules. Macromolecules, 2020, 53, 9337-9344.	4.8	30
3	Simultaneous promotion of efficiency and lifetime of organic phosphorescence for self-referenced temperature sensing. Chemical Engineering Journal, 2020, 400, 125934.	12.7	32
4	A mass-amplifying electrochemiluminescence film (MAEF) for the visual detection of dopamine in aqueous media. Nanoscale, 2020, 12, 8828-8835.	5.6	25
5	Facile Synthesis of Efficient Luminogens with AIE Features for Threeâ€Photon Fluorescence Imaging of the Brain through the Intact Skull. Advanced Materials, 2020, 32, e2000364.	21.0	103
6	Bright electrochemiluminescent films of efficient aggregation-induced emission luminogens for sensitive detection of dopamine. Materials Chemistry Frontiers, 2019, 3, 2051-2057.	5.9	18
7	Longâ€Lived Roomâ€Temperature Phosphorescence for Visual and Quantitative Detection of Oxygen. Angewandte Chemie - International Edition, 2019, 58, 12102-12106.	13.8	195
8	Synthesis of an efficient far-red/near-infrared luminogen with AIE characteristics for <i>in vivo</i> bioimaging applications. Chemical Communications, 2019, 55, 5615-5618.	4.1	32
9	Thermoresponsive Fluorescent Semicrystalline Polymers Decorated with Aggregation Induced Emission Luminogens. Chinese Journal of Polymer Science (English Edition), 2019, 37, 394-400.	3.8	17
10	Ultrabright red AlEgens for two-photon vascular imaging with high resolution and deep penetration. Chemical Science, 2018, 9, 2705-2710.	7.4	98
11	Fluorescent detection of Cu(II) by chitosan-based AIE bioconjugate. Chinese Journal of Polymer Science (English Edition), 2017, 35, 365-371.	3.8	41
12	3,4,5-Triphenyl-1,2,4-triazole-based multifunctional n-type AlEgen. Science China Chemistry, 2017, 60, 635-641.	8.2	11
13	Functionalized AIE nanoparticles with efficient deep-red emission, mitochondrial specificity, cancer cell selectivity and multiphoton susceptibility. Chemical Science, 2017, 8, 4634-4643.	7.4	69
14	Significantly Improved Sodium-Ion Storage Performance of CuS Nanosheets Anchored into Reduced Graphene Oxide with Ether-Based Electrolyte. ACS Applied Materials & Interfaces, 2017, 9, 2309-2316.	8.0	149
15	AIE Nanoparticles with High Stimulated Emission Depletion Efficiency and Photobleaching Resistance for Longâ€Term Superâ€Resolution Bioimaging. Advanced Materials, 2017, 29, 1703643.	21.0	140
16	Aggregation-Induced Emission Luminogen with Deep-Red Emission for Through-Skull Three-Photon Fluorescence Imaging of Mouse. ACS Nano, 2017, 11, 10452-10461.	14.6	156
17	A Simple and Sensitive Method for an Important Physical Parameter: Reliable Measurement of Glass Transition Temperature by AlEgens. Macromolecules, 2017, 50, 7620-7627.	4.8	50
18	Toxicity assessment and long-term three-photon fluorescence imaging of bright aggregation-induced emission nanodots in zebrafish. Nano Research, 2016, 9, 1921-1933.	10.4	26

Wei Qin

#	Article	IF	CITATIONS
19	Biocompatible Red Fluorescent Organic Nanoparticles with Tunable Size and Aggregationâ€Induced Emission for Evaluation of Blood–Brain Barrier Damage. Advanced Materials, 2016, 28, 8760-8765.	21.0	80
20	Gelation process visualized by aggregation-induced emission fluorogens. Nature Communications, 2016, 7, 12033.	12.8	179
21	Stable and Size-Tunable Aggregation-Induced Emission Nanoparticles Encapsulated with Nanographene Oxide and Applications in Three-Photon Fluorescence Bioimaging. ACS Nano, 2016, 10, 588-597.	14.6	97
22	Multifunctional organic nanoparticles with aggregation-induced emission (AIE) characteristics for targeted photodynamic therapy and RNA interference therapy. Chemical Communications, 2016, 52, 2752-2755.	4.1	90
23	A mechanistic study of AIE processes of TPE luminogens: intramolecular rotation vs. configurational isomerization. Journal of Materials Chemistry C, 2016, 4, 99-107.	5.5	132
24	Cellular and Mitochondrial Dualâ€Targeted Organic Dots with Aggregationâ€Induced Emission Characteristics for Imageâ€Guided Photodynamic Therapy. Advanced Healthcare Materials, 2015, 4, 2667-2676.	7.6	74
25	Highâ€Order Nonâ€Linear Optical Effects in Organic Luminogens with Aggregationâ€Induced Emission. Advanced Materials, 2015, 27, 2332-2339.	21.0	99
26	Aggregation-induced emission (AIE) dye loaded polymer nanoparticles for gene silencing in pancreatic cancer and their in vitro and in vivo biocompatibility evaluation. Nano Research, 2015, 8, 1563-1576.	10.4	38
27	Silica shelled and block copolymer encapsulated red-emissive AIE nanoparticles with 50% quantum yield for two-photon excited vascular imaging. Chemical Communications, 2015, 51, 13416-13419.	4.1	45
28	Red emissive AIE luminogens with high hole-transporting properties for efficient non-doped OLEDs. Chemical Communications, 2015, 51, 7321-7324.	4.1	76
29	Construction of Efficient Deep Blue Aggregation-Induced Emission Luminogen from Triphenylethene for Nondoped Organic Light-Emitting Diodes. Chemistry of Materials, 2015, 27, 3892-3901.	6.7	208
30	Sensitive and reliable detection of glass transition of polymers by fluorescent probes based on AIE luminogens. Polymer Chemistry, 2015, 6, 3537-3542.	3.9	64
31	Organic nanoparticles with aggregation-induced emission for tracking bone marrow stromal cells in the rat ischemic stroke model. Chemical Communications, 2014, 50, 15136-15139.	4.1	22
32	Precise and Long-Term Tracking of Adipose-Derived Stem Cells and Their Regenerative Capacity <i>via</i> Superb Bright and Stable Organic Nanodots. ACS Nano, 2014, 8, 12620-12631.	14.6	141
33	Redâ€Emissive Chemiluminescent Nanoparticles with Aggregationâ€Induced Emission Characteristics for In Vivo Hydrogen Peroxide Imaging. Particle and Particle Systems Characterization, 2014, 31, 1238-1243.	2.3	19
34	Bright and Photostable Organic Fluorescent Dots with Aggregationâ€Induced Emission Characteristics for Noninvasive Longâ€Term Cell Imaging. Advanced Functional Materials, 2014, 24, 635-643.	14.9	210
35	Crystallization-Induced Hybrid Nano-Sheets of Fluorescent Polymers with Aggregation-Induced Emission Characteristics for Sensitive Explosive Detection. ACS Macro Letters, 2014, 3, 21-25.	4.8	63
36	Targeted and image-guided photodynamic cancer therapy based on organic nanoparticles with aggregation-induced emission characteristics. Chemical Communications, 2014, 50, 8757.	4.1	185

Wei Qin

#	Article	IF	CITATIONS
37	Near-infrared fluorescence amplified organic nanoparticles with aggregation-induced emission characteristics for in vivo imaging. Nanoscale, 2014, 6, 939-945.	5.6	80
38	Biocompatible and Photostable AIE Dots with Red Emission for In Vivo Two-Photon Bioimaging. Scientific Reports, 2014, 4, 4279.	3.3	100
39	Fluorescent pH sensor constructed from a heteroatom-containing luminogen with tunable AIE and ICT characteristics. Chemical Science, 2013, 4, 3725.	7.4	198
40	Fluorescent AIE dots encapsulated organically modified silica (ORMOSIL) nanoparticles for two-photon cellular imaging. Science China Chemistry, 2013, 56, 1247-1252.	8.2	24
41	Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing. Scientific Reports, 2013, 3, 1150.	3.3	319
42	Long-Term Fluorescent Cellular Tracing by the Aggregates of AIE Bioconjugates. Journal of the American Chemical Society, 2013, 135, 8238-8245.	13.7	357
43	Organic Dots with Aggregation-Induced Emission (AIE Dots) Characteristics for Dual-Color Cell Tracing. Chemistry of Materials, 2013, 25, 4181-4187.	6.7	115
44	Imaging: Conjugated Polymer Amplified Farâ€Red/Nearâ€Infrared Fluorescence from Nanoparticles with Aggregationâ€Induced Emission Characteristics for Targeted In Vivo Imaging (Adv. Healthcare Mater.) Tj ETQq0 (0 07rgBT /0	Overlock 10 Tf
45	Gadoliniumâ€Functionalized Aggregationâ€Induced Emission Dots as Dualâ€Modality Probes for Cancer Metastasis Study. Advanced Healthcare Materials, 2013, 2, 1600-1605.	7.6	49
46	A tetraphenylethene-based red luminophor for an efficient non-doped electroluminescence device and cellular imaging. Journal of Materials Chemistry, 2012, 22, 11018.	6.7	85
47	Naphthalene-substituted 2,3,4,5-tetraphenylsiloles: synthesis, structure, aggregation-induced emission and efficient electroluminescence. Journal of Materials Chemistry, 2012, 22, 20266.	6.7	24
48	An AIE-active hemicyanine fluorogen with stimuli-responsive red/blue emission: extending the pH sensing range by "switch + knob―effect. Chemical Science, 2012, 3, 1804.	7.4	171
49	Fabrication of small organic luminogens honeycomb-structured films with aggregation-induced emission features. Journal of Materials Chemistry, 2012, 22, 15869.	6.7	29
50	One-step fabrication of organic nanoparticles as scattering media for extracting substrate waveguide light from organic light-emitting diodes. Journal of Materials Chemistry, 2012, 22, 13386.	6.7	21
51	Biocompatible Nanoparticles with Aggregationâ€Induced Emission Characteristics as Farâ€Red/Nearâ€Infrared Fluorescent Bioprobes for In Vitro and In Vivo Imaging Applications. Advanced Functional Materials, 2012, 22, 771-779.	14.9	599