Zelmira Balazova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5311953/publications.pdf

Version: 2024-02-01

1478505 1372567 34 142 10 6 citations h-index g-index papers 34 34 34 104 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Determination of Pb and Cd in Macedonian Wines by Electrothermal Atomic Absorption Spectrometry (ETAAS). Food Analytical Methods, 2015, 8, 1947-1952.	2.6	29
2	Start codon targeted (scot) polymorphism reveals genetic diversity in european old maize (zea mays l.) Genotypes. Potravinarstvo, 2016 , 10 , .	0.6	18
3	Identification and differentiation of Ricinus communis L. using SSR markers. Potravinarstvo, 2015, 9, 556-561.	0.6	10
4	GENETIC DIVERSITY ANALYSIS OF MAIZE (ZEA MAYS L.) USING SCoT MARKERS. Journal of Microbiology, Biotechnology and Food Sciences, 2017, 6, 1170-1173.	0.8	10
5	Detection of genetic relationships among spring and winter triticale (× Triticosecale Witt.) and rye cultivars (Secale cereale L.) by using retrotransposon-based markers. Czech Journal of Genetics and Plant Breeding, 2013, 49, 171-174.	0.8	8
6	Detection genetic variability of secale cereale L. by scot markers. Potravinarstvo, 2017, 11, .	0.6	7
7	Genetic variation and relationships of old maize genotypes (Zea mays l.) detected using SDS-page. Potravinarstvo, 2016, 10, .	0.6	5
8	Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated castor (Ricinus communis L.) genotypes. Genetika, 2019, 51, 137-146.	0.4	5
9	Identification of Triticum aestivum L., Triticum spelta L. and Triticum durum DESF. genotypes on the HMW-GS base. Plant, Soil and Environment, 2010, 56, 82-86.	2.2	4
10	Molecular marker-based characterization of a set of wheat genotypes adapted to Central Europe. Cereal Research Communications, 2014, 42, 189-198.	1.6	4
11	Assessment of rapd polymorphism in rye (Secale cereale L.) genotypes. Journal of Microbiology, Biotechnology and Food Sciences, 2015, 04, 94-97.	0.8	4
12	RAPD analysis of the genetic polymorphism in european wheat genotypes. Potravinarstvo, 2016, 10, .	0.6	4
13	Evaluation of molecular diversity of central European maize cultivars. Emirates Journal of Food and Agriculture, 2016, 28, 93.	1.0	4
14	Molecular characterization of rye cultivars. Potravinarstvo, 2016, 10, .	0.6	4
15	Genetic variation of european maize genotypes (Zea mays L.) Detected using ssr markers. Potravinarstvo, 2017, 11, 126-131.	0.6	4
16	Genetic diversity and population structure in tunisian castor genotypes (Ricinus communis L.) Detected using scot markers. Potravinarstvo, 2018, 12, .	0.6	4
17	STUDY OF DNA POLYMORPHISM OF THE CASTOR NEW LINES BASED ON RAPD MARKERS. Journal of Microbiology, Biotechnology and Food Sciences, 2015, 4, 125-127.	0.8	3
18	Application of rye SSR markers for detection of genetic diversity in triticale. Journal of Microbiology, Biotechnology and Food Sciences, 2016, 05, 623-626.	0.8	2

#	Article	IF	Citations
19	Molecular variability of oat based on gene specific markers. Potravinarstvo, 2017, 11, .	0.6	2
20	Molecular analysis of buckwheat using gene specific markers. Potravinarstvo, 2018, 12, 546-552.	0.6	2
21	Genetic divergence in Tunisian castor bean genotypes based on trap markers. Potravinarstvo, 0, 14, 510-518.	0.6	2
22	Comparison of 2-de proteome maps of wheat, rye and amaranth. Journal of Microbiology, Biotechnology and Food Sciences, 2015, 04, 7-10.	0.8	1
23	GENETIC DIVERSITY ANALYSIS OF CASTOR (RICINUS COMMUNIS L.) USING SSR MARKERS. Journal of Microbiology, Biotechnology and Food Sciences, 2016, 6, 777-780.	0.8	1
24	Characterization of Tunisian castor bean genotypes using SDS-PAGE of total seed storage proteins. Potravinarstvo, 2018, 12, 701-706.	0.6	1
25	Application of wheat SSR markers for detection of genetic diversity in triticale (x Triticosecale witt.). Genetika, 2015, 47, 983-992.	0.4	1
26	Assessment of rapd polymorphism in ricin genotypes. Journal of Microbiology, Biotechnology and Food Sciences, 2016, 05, 386-388.	0.8	1
27	Study of polymorphism of maize using dna and protein markers. Potravinarstvo, 2018, 12, .	0.6	1
28	Genetic Diversity of Oat Genotypes Using SCoT Markers. , 2021, 11, .		1
29	Protein maps of buckwheat and amaranth. Current Opinion in Biotechnology, 2013, 24, S133.	6.6	0
30	GENETIC VARIATION OF MAIZE GENOTYPES (ZEA MAYS L.) DETECTED USING SDS-PAGE. Journal of Microbiology, Biotechnology and Food Sciences, 2017, 6, 1086-1089.	0.8	0
31	Perception of biotech trees by Slovak university students – a comparative survey. Nova Biotechnologica Et Chimica, 2017, 16, 12-19.	0.1	0
32	MicroRNA-Based and Proteomics Fingerprinting of Avena sativa L. Genotypes. , $2021,11,$		0
33	Detection of Celiac Active Polypeptides in Wheat, Oat and Buckwheat Using Immunochemical Methods. , 2021, 11 , .		0
34	Proteomic and Genetic Approach for Lunasin Peptide and Gene Presence Detection in Various Plants. , 2021, 11, .		0