Justus V Verhagen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5310351/publications.pdf

Version: 2024-02-01

430754 434063 2,329 31 18 31 citations g-index h-index papers 32 32 32 1599 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sniffing controls an adaptive filter of sensory input to the olfactory bulb. Nature Neuroscience, 2007, 10, 631-639.	7.1	346
2	The neurocognitive bases of human multimodal food perception: Sensory integration. Neuroscience and Biobehavioral Reviews, 2006, 30, 613-650.	2.9	315
3	Rapid Encoding and Perception of Novel Odors in the Rat. PLoS Biology, 2008, 6, e82.	2.6	173
4	Primate Insular/Opercular Taste Cortex: Neuronal Representations of the Viscosity, Fat Texture, Grittiness, Temperature, and Taste of Foods. Journal of Neurophysiology, 2004, 92, 1685-1699.	0.9	169
5	Temporal Structure of Receptor Neuron Input to the Olfactory Bulb Imaged in Behaving Rats. Journal of Neurophysiology, 2009, 101, 1073-1088.	0.9	159
6	Neuronal Representations of Stimuli in the Mouth: The Primate Insular Taste Cortex, Orbitofrontal Cortex and Amygdala. Chemical Senses, 2005, 30, 401-419.	1.1	150
7	Neurons in the Primate Orbitofrontal Cortex Respond to Fat Texture Independently of Viscosity. Journal of Neurophysiology, 2003, 90, 1514-1525.	0.9	142
8	Representations of the Texture of Food in the Primate Orbitofrontal Cortex: Neurons Responding to Viscosity, Grittiness, and Capsaicin. Journal of Neurophysiology, 2003, 90, 3711-3724.	0.9	139
9	Algorithms for Olfactory Search across Species. Journal of Neuroscience, 2018, 38, 9383-9389.	1.7	117
10	Why Sniff Fast? The Relationship Between Sniff Frequency, Odor Discrimination, and Receptor Neuron Activation in the Rat. Journal of Neurophysiology, 2009, 101, 1089-1102.	0.9	95
11	The Representation of Information About Taste and Odor in the Orbitofrontal Cortex. Chemosensory Perception, 2010, 3, 16-33.	0.7	69
12	The neurocognitive bases of human multimodal food perception: Consciousness. Brain Research Reviews, 2007, 53, 271-286.	9.1	66
13	Retronasal Odor Representations in the Dorsal Olfactory Bulb of Rats. Journal of Neuroscience, 2012, 32, 7949-7959.	1.7	49
14	Perception of Odors Linked to Precise Timing in the Olfactory System. PLoS Biology, 2014, 12, e1002021.	2.6	42
15	Artificial neural network analysis of gustatory responses in the thalamic taste relay of the rat. Physiology and Behavior, 2004, 80, 499-513.	1.0	39
16	Evidence that the Sweetness of Odors Depends on Experience in Rats. Chemical Senses, 2010, 35, 767-776.	1.1	38
17	Direct Behavioral Evidence for Retronasal Olfaction in Rats. PLoS ONE, 2012, 7, e44781.	1.1	31
18	The Habituation/Cross-Habituation Test Revisited: Guidance from Sniffing and Video Tracking. Neural Plasticity, 2016, 2016, 1-14.	1.0	22

#	Article	IF	CITATIONS
19	Direct Behavioral and Neurophysiological Evidence for Retronasal Olfaction in Mice. PLoS ONE, 2015, 10, e0117218.	1.1	21
20	Comparison of glomerular activity patterns by fMRI and wide-field calcium imaging: Implications for principles underlying odor mapping. Neurolmage, 2016, 126, 208-218.	2.1	19
21	Orthonasal versus retronasal glomerular activity in rat olfactory bulb by fMRI. NeuroImage, 2020, 212, 116664.	2.1	19
22	A Comparison between Mouse, <i>In Silico </i> , and Robot Odor Plume Navigation Reveals Advantages of Mouse Odor Tracking. ENeuro, 2020, 7, ENEURO.0212-19.2019.	0.9	17
23	A simple method for reconditioning epoxy-coated microelectrodes for extracellular single neuron recording. Journal of Neuroscience Methods, 2003, 123, 215-217.	1.3	16
24	Retronasal odor concentration coding in glomeruli of the rat olfactory bulb. Frontiers in Integrative Neuroscience, 2014, 8, 81.	1.0	15
25	Spatiotemporal dynamics of odor responses in the lateral and dorsal olfactory bulb. PLoS Biology, 2019, 17, e3000409.	2.6	15
26	Active sensing in a dynamic olfactory world. Journal of Computational Neuroscience, 2022, 50, 1-6.	0.6	15
27	Respiration Gates Sensory Input Responses in the Mitral Cell Layer of the Olfactory Bulb. PLoS ONE, 2016, 11, e0168356.	1.1	13
28	A Role for Lung Retention in the Sense of Retronasal Smell. Chemosensory Perception, 2015, 8, 78-84.	0.7	7
29	Spontaneous activity forms a foundation for odor-evoked activation maps in the rat olfactory bulb. Neurolmage, 2018, 172, 586-596.	2.1	6
30	Thalamic activations in rat brain by fMRI during tactile (forepaw, whisker) and non-tactile (visual,) Tj ETQq0 0 0 r	gBT_lOverl	lock 10 Tf 50
31	An automated sensitive approach for measuring whole gut transit time. Neurogastroenterology and Motility, 2020, 32, e13894.	1.6	2