
Ulf Molau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5310212/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The tundra phenology database: more than two decades of tundra phenology responses to climate change. Arctic Science, 2022, 8, 1026-1039.	2.3	7
2	Impact of ambient temperature, precipitation and seven years of experimental warming and nutrient addition on fruit production in an alpine heath and meadow community. Science of the Total Environment, 2022, 836, 155450.	8.0	1
3	Effects of ambient climate and three warming treatments on fruit production in an alpine, subarctic meadow community. American Journal of Botany, 2021, 108, 411-422.	1.7	9
4	Decreased soil moisture due to warming drives phylogenetic diversity and community transitions in the tundra. Environmental Research Letters, 2021, 16, 064031.	5.2	10
5	Decomposition rate and stabilization across six tundra vegetation types exposed to >20Âyears of warming. Science of the Total Environment, 2020, 724, 138304.	8.0	26
6	Bryophyte cover and richness decline after 18 years of experimental warming in alpine Sweden. AoB PLANTS, 2020, 12, plaa061.	2.3	22
7	Warming shortens flowering seasons of tundra plant communities. Nature Ecology and Evolution, 2019, 3, 45-52.	7.8	79
8	Impacts of seven years of experimental warming and nutrient addition on neighbourhood species interactions and community structure in two contrasting alpine plant communities. Ecological Complexity, 2018, 33, 31-40.	2.9	5
9	Plant functional trait change across a warming tundra biome. Nature, 2018, 562, 57-62.	27.8	451
10	Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes. Global Change Biology, 2017, 23, 2660-2671.	9.5	171
11	Expansion of deciduous tall shrubs but not evergreen dwarf shrubs inhibited by reindeer in Scandes mountain range. Journal of Ecology, 2017, 105, 1547-1561.	4.0	49
12	Community and species-specific responses of plant traits to 23 years of experimental warming across subarctic tundra plant communities. Scientific Reports, 2017, 7, 2571.	3.3	37
13	Responses of lichen communities to 18 years of natural and experimental warming. Annals of Botany, 2017, 120, 159-170.	2.9	35
14	Impacts of different climate change regimes and extreme climatic events on an alpine meadow community. Scientific Reports, 2016, 6, 21720.	3.3	33
15	Vascular plant abundance and diversity in an alpine heath under observed and simulated global change. Scientific Reports, 2015, 5, 10197.	3.3	16
16	Testing reliability of short-term responses to predict longer-term responses of bryophytes and lichens to environmental change. Ecological Indicators, 2015, 58, 77-85.	6.3	27
17	Variation in Life History Traits of <i>Gentiana nivalis</i> (Gentianaceae) in Alpine and Sub-Alpine Habitats in the Norwegian Mountains and Its Implications for Biodiversity in Relation to Environmental Change. Annales Botanici Fennici, 2015, 52, 149-159.	0.1	0
18	Climate change and climatic events: community-, functional- and species-level responses of bryophytes and lichens to constant, stepwise, and pulse experimental warming in an alpine tundra. Alpine Botany, 2014, 124, 81-91.	2.4	26

Ulf Molau

#	Article	IF	CITATIONS
19	Dominance hierarchies, diversity and species richness of vascular plants in an alpine meadow: contrasting short and medium term responses to simulated global change. PeerJ, 2014, 2, e406.	2.0	26
20	Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change, 2012, 2, 453-457.	18.8	745
21	Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecology Letters, 2012, 15, 164-175.	6.4	764
22	Long-term impacts of observed and induced climate change on tussock tundra near its southern limit in northern Sweden. Plant Ecology and Diversity, 2010, 3, 29-34.	2.4	42
23	Plant community responses to 5Âyears of simulated climate change in meadow and heath ecosystems at a subarctic-alpine site. Oecologia, 2009, 161, 601-610.	2.0	68
24	On the interface between ecology and geomorphology. Norsk Geografisk Tidsskrift, 2008, 62, 52-54.	0.7	5
25	Ecology of Alpine Snowbeds and the Impact of Global Change. Arctic, Antarctic, and Alpine Research, 2007, 39, 34-43.	1.1	165
26	Repeatedly out of Beringia: Cassiope tetragona embraces the Arctic. Journal of Biogeography, 2007, 34, 1559-1574.	3.0	74
27	Linkages between N turnover and plant community structure in a tundra landscape. Plant and Soil, 2007, 294, 247-261.	3.7	79
28	From The Cover: Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1342-1346.	7.1	1,060
29	Onset of flowering and climate variability in an alpine landscape: a 10â€year study from Swedish Lapland. American Journal of Botany, 2005, 92, 422-431.	1.7	145
30	Rates of Chemical and Mechanical Fluvial Denudation in an Arctic Oceanic Periglacial Environment, Latnjavagge Drainage Basin, Northernmost Swedish Lapland. Arctic, Antarctic, and Alpine Research, 2005, 37, 75-87.	1.1	24
31	Mountain Biodiversity Patterns at Low and High Latitudes. Ambio, 2004, 33, 24.	5.5	12
32	Pollen viability and limitation of seed production in a population of the circumpolar cushion plant, Silene acaulis (Caryophyllaceae). Nordic Journal of Botany, 2001, 21, 365-372.	0.5	14
33	Seed rain and seed bank along an alpine altitudinal gradient in Swedish Lapland. Canadian Journal of Botany, 2000, 78, 728-747.	1.1	42
34	Variations in reproductive traits at inflorescence and flower levels of an arctic legume, Astragalus alpinus L.: Comparisons between a subalpine and an alpine population. Plant Species Biology, 1999, 14, 181-191.	1.0	36
35	Effects of snowmelt timing on leaf traits, leaf production, and shoot growth of alpine plants: Comparisons along a snowmelt gradient in northern Sweden. Ecoscience, 1999, 6, 439-450.	1.4	75
36	Phenology and Reproductive Success in Arctic Plants: Susceptibility to Climate Change. Ecological Studies, 1997, , 153-170.	1.2	32

Ulf Molau

#	Article	IF	CITATIONS
37	Ageâ€related growth and reproduction in Diapensia lapponica, an arcticâ€alpine cushion plant. Nordic Journal of Botany, 1997, 17, 225-234.	O.5	28
38	Genetic variation in the clonal bryophyte Hylocomium splendens at hierarchical geographical scales in Scandinavia. Heredity, 1997, 78, 293-301.	2.6	66
39	Genetic variation in the clonal bryophyte Hylocomium splendens at hierarchical geographical scales in Scandinavia. Heredity, 1997, 78, 293-301.	2.6	8
40	Effect of altitude on the sex ratio in populations of Silene acaulis (Caryophyllaceae). Nordic Journal of Botany, 1995, 15, 251-256.	0.5	36
41	Reproductive ecology of the three Nordic Pinguicula species (Lentibulariaceae). Nordic Journal of Botany, 1993, 13, 149-157.	0.5	36
42	Relationships between Flowering Phenology and Life History Strategies in Tundra Plants. Arctic and Alpine Research, 1993, 25, 391.	1.3	212
43	Nothobartsia, a new genus ofScrophulariaceae from southwest Europe. Plant Systematics and Evolution, 1992, 179, 59-71.	0.9	12
44	On the occurrence of sexual reproduction in Saxifraga cernua and S. foliolosa (Saxifragaceae). Nordic Journal of Botany, 1992, 12, 197-203.	0.5	31
45	GENDER VARIATION IN BARTSIA ALPINA (SCROPHULARIACEAE), A SUBARCTIC PERENNIAL HERMAPHRODITE. American Journal of Botany, 1991, 78, 326-339.	1.7	27
46	Gender Variation in Bartsia alpina (Scrophulariaceae), a Subarctic Perennial Hermaphrodite. American Journal of Botany, 1991, 78, 326.	1.7	9
47	Predispersal seed predation in Bartsia alpina. Oecologia, 1989, 81, 181-185.	2.0	75
48	Mating System and Pollen-Mediated Gene Flow in Bartsia alpina. Oikos, 1989, 55, 409.	2.7	29
49	Hedbergia, a new genus of Scrophulariaceae from Africa. Nordic Journal of Botany, 1988, 8, 193-195.	O.5	5
50	New taxa and combinations in Calceolaria (Scrophulariaceae) from Peru and Bolivia. Nordic Journal of Botany, 1984, 4, 629-654.	0.5	1
51	Analysis of a virgin páramo plant community on Volcán Sumaco, Ecuador. Nordic Journal of Botany, 1983, 2, 567-574.	0.5	11
52	The genus Calceolaria in NW South America. VI. The sections Urticopsis, Lobatae and Micranthera. Nordic Journal of Botany, 1981, 1, 165-185.	0.5	8
53	The genus Calceolaria in NW South America VII. The section Zygophylla. Nordic Journal of Botany, 1981, 1, 493-519.	0.5	7
54	The genus Calceolaria in NW South America VIII. The section Calceolaria and appendices to parts l–VIII. Nordic Journal of Botany, 1981, 1, 595-615.	0.5	4

#	Article	IF	CITATIONS
55	Changes in plant composition and diversity in an alpine heath and meadow after 18Âyears of experimental warming. Alpine Botany, 0, , 1.	2.4	2