List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5309738/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Goldâ€Catalyzed Cycloisomerization Reactions of 2â€Tosylaminophenylpropâ€1â€ynâ€3â€ols as a Versatile Approach for Indole Synthesis. Angewandte Chemie - International Edition, 2010, 49, 4619-4623.	7.2	123
2	Gold-Catalyzed Cycloisomerization of 1,6-Diyne Carbonates and Esters to 2,4a-Dihydro-1 <i>H</i> -fluorenes. Journal of the American Chemical Society, 2013, 135, 7926-7932.	6.6	122
3	Gold-Catalyzed Tandem 1,3-Migration/[2 + 2] Cycloaddition of 1,7-Enyne Benzoates to Azabicyclo[4.2.0]oct-5-enes. Journal of the American Chemical Society, 2011, 133, 15248-15251.	6.6	112
4	Ligand-Controlled Product Selectivity in Gold-Catalyzed Double Cycloisomerization of 1,11-Dien-3,9-Diyne Benzoates. Journal of the American Chemical Society, 2015, 137, 6350-6355.	6.6	102
5	Gold-Catalyzed Cycloisomerization of 1,7-Diyne Benzoates to Indeno[1,2- <i>c</i>]azepines and Azabicyclo[4.2.0]octa-1(8),5-dines. Journal of the American Chemical Society, 2012, 134, 10811-10814.	6.6	96
6	Broadly Applicable Directed Catalytic Reductive Difunctionalization of Alkenyl Carbonyl Compounds. CheM, 2020, 6, 738-751.	5.8	88
7	Gold-catalysed allylic alkylation of aromatic and heteroaromatic compounds with allylic alcohols. Organic and Biomolecular Chemistry, 2008, 6, 2426.	1.5	85
8	Goldâ€Catalyzed Tandem Intramolecular Heterocyclization/Petasis–Ferrier Rearrangement of 2â€(Propâ€2â€ynyloxy)benzaldehydes as an Expedient Route to Benzo[<i>b</i>]oxepinâ€3(2 <i>H</i>)â€0 Chemistry - A European Journal, 2011, 17, 1437-1441.	one s. 7	65
9	Nickel-Catalyzed Defluorinative Reductive Cross-Coupling Reaction of <i>gem-</i> Difluoroalkenes with Thiosulfonate or Selenium Sulfonate. Journal of Organic Chemistry, 2019, 84, 11542-11552.	1.7	65
10	Gold―and Silver atalyzed Tandem Amination/Ring Expansion of Cyclopropyl Methanols with Sulfonamides as an Expedient Route to Pyrrolidines. Chemistry - A European Journal, 2008, 14, 10486-10495.	1.7	62
11	Ga(OTf) ₃ -Catalyzed Temperature-Controlled Regioselective Friedel–Crafts Alkylation of Trifluoromethylated 3-Indolylmethanols with 2-Substituted Indoles: Divergent Synthesis of Trifluoromethylated Unsymmetrical 3,3′-and 3,6′-Bis(indolyl)methanes. Organic Letters, 2019, 21, 3396-3401.	2.4	61
12	lodine-catalyzed allylation of 1,3-dicarbonyl compounds with allylic alcohols at room temperature. Tetrahedron Letters, 2008, 49, 122-126.	0.7	57
13	Alkyl halides as both hydride and alkyl sources in catalytic regioselective reductive olefin hydroalkylation. Nature Communications, 2020, 11, 5857.	5.8	56
14	Gold-Catalyzed Cycloisomerization of 1,7-Enyne Esters to Structurally Diverse <i>cis</i> -1,2,3,6-Tetrahydropyridin-4-yl Ketones. Journal of Organic Chemistry, 2013, 78, 3183-3195.	1.7	55
15	Gold-Catalyzed Domino Aminocyclization/1,3-Sulfonyl Migration of N-Substituted <i>N</i> -Sulfonyl-aminobut-3-yn-2-ols to 1-Substituted 3-Sulfonyl-1 <i>H</i> -pyrroles. Journal of Organic Chemistry, 2013, 78, 7508-7517.	1.7	54
16	lodine-catalyzed allylic alkylation of sulfonamides and carbamates with allylic alcohols at room temperature. Tetrahedron Letters, 2008, 49, 2620-2624.	0.7	53
17	Ytterbium(III) Triflate-Catalyzed Amination of 1-Cyclopropylprop-2-yn-1-ols as an Expedient Route to Conjugated Enynes. Journal of Organic Chemistry, 2009, 74, 1740-1743.	1.7	53
18	Goldâ€Catalyzed [2+2+1] Cycloaddition of 1,6â€Diyne Carbonates and Esters with Aldehydes to 4â€(Cyclohexaâ€1,3â€dienyl)â€1,3â€dioxolanes. Chemistry - A European Journal, 2014, 20, 713-718.	1.7	50

#	Article	IF	CITATIONS
19	Goldâ€Catalyzed Cycloisomerization of 1,6,8â€Dienyne Carbonates and Esters to <i>cis</i> â€Cycloheptaâ€4,8â€dieneâ€Fused Pyrrolidines. Chemistry - A European Journal, 2014, 20, 13174-1318	80 <mark>1.7</mark>	49
20	Iron(III) chloride-catalysed direct nucleophilic α-substitution of Morita-Baylis-Hillman alcohols with alcohols, arenes, 1,3-dicarbonyl compounds, and thiols. Organic and Biomolecular Chemistry, 2009, 7, 4186.	1.5	47
21	Rapid Access to Halohydrofurans via BrÃ,nsted Acid-Catalyzed Hydroxylation/Halocyclization of Cyclopropyl Methanols with Water and Electrophilic Halides. Journal of Organic Chemistry, 2011, 76, 2521-2531.	1.7	44
22	Cyclopropyl Carbinol Rearrangement for Benzoâ€Fused Nitrogen Ring Synthesis. Chemistry - A European Journal, 2011, 17, 10081-10088.	1.7	43
23	Gold-Catalyzed Cycloisomerization of 1,6-Diyne Esters to 1 <i>H</i> -Cyclopenta[<i>b</i>]naphthalenes, <i>cis</i> -Cyclopenten-2-yl δ-Diketones, and Bicyclo[3.2.0]hepta-1,5-dienes. Journal of Organic Chemistry, 2014, 79, 11301-11315.	1.7	39
24	Metal-Free Chemoselective Reaction of Sulfoxonium Ylides and Thiosulfonates: Diverse Synthesis of 1,4-Diketones, Aryl Sulfursulfoxonium Ylides, and β-Keto Thiosulfones Derivatives. Organic Letters, 2020, 22, 6600-6604.	2.4	38
25	Gold-Catalyzed Tandem 1,3-Migration/Double Cyclopropanation of 1-Ene-4, <i>n</i> -diyne Esters to Tetracyclodecene and Tetracycloundecene Derivatives. Organic Letters, 2016, 18, 4730-4733.	2.4	36
26	Gold- and silver-catalyzed allylic alkylation of 1,3-dicarbonyl compounds with allylic alcohols. Tetrahedron, 2009, 65, 1833-1838.	1.0	35
27	Palladiumâ€Catalyzed Oneâ€Pot Synthesis of C2â€Quaternary Indolinâ€3â€ones via 1 <i>H</i> â€indoleâ€3â€sul Generated in Situ from 2â€Alkynyl Arylazides and Sulfonic Acids. Advanced Synthesis and Catalysis, 2017, 359, 4147-4152.	fonates 2.1	35
28	A trisulfur radical anion (S ₃ Ë™ ^{â^'}) involved sulfur insertion reaction of 1,3-enynes: sulfide sources control chemoselective synthesis of 2,3,5-trisubstituted thiophenes and 3-thienyl disulfides. Chemical Communications, 2019, 55, 7808-7811.	2.2	35
29	Goldâ€Catalyzed Cycloisomerization and Diels–Alder Reaction of 1,4,9â€Dienyne Esters to 3 a,6â€Methanoisoindole Esters with Proâ€Inflammatory Cytokine Antagonist Activity. Chemistry - A European Journal, 2015, 21, 9111-9118.	1.7	34
30	Three-component heteroannulation for tetrasubstituted furan construction enabled by successive defluorination and dual sulfonylation relay. Green Chemistry, 2021, 23, 935-941.	4.6	34
31	Efficient preparation of unsymmetrical disulfides by nickel-catalyzed reductive coupling strategy. Nature Communications, 2022, 13, 2588.	5.8	33
32	Gold-Catalyzed Benzannulation of 5-Hydroxy-3-oxoalk-6-ynoate Esters to <i>o</i> -Phenolic Esters. Organic Letters, 2014, 16, 1248-1251.	2.4	30
33	Copper(II) Triflateâ€Catalyzed Intramolecular Hydroamination of Homoallylic Amino Alcohols as an Expedient Route to <i>trans</i> â€2,5â€Dihydroâ€1 <i>H</i> â€pyrroles and 1,2â€Dihydroquinolines. Advanced Synthesis and Catalysis, 2010, 352, 2521-2530.	2.1	29
34	Coldâ€Catalyzed Sequential Cyclization of 1â€Enâ€3,9â€Diyne Esters to Partially Hydrogenated 3 <i>H</i> â€Dicyclopenta[<i>a</i> , <i>b</i>]naphthalenes. Chemistry - A European Journal, 2016, 22, 6532-6536.	1.7	28
35	Selective Quadruple C(sp3)-F Functionalization of Polyfluoroalkyl Ketones. IScience, 2020, 23, 101259.	1.9	27
36	Copper(II)-Mediated Ring Opening/Alkynylation of Tertiary Cyclopropanols by Using Nonmodified Terminal Alkynes. Organic Letters, 2020, 22, 5456-5461.	2.4	27

#	Article	IF	CITATIONS
37	Palladium-catalyzed direct reductive cross-coupling of aryltrimethylammonium salts with aryl bromides. Organic Chemistry Frontiers, 2021, 8, 4865-4870.	2.3	26
38	Visible-Light-Promoted Cross-Coupling Reactions of Aryldiazonium Salts with <i>S</i> -Methyl- <i>d</i> ₃ Sulfonothioate or <i>Se</i> -Methyl- <i>d</i> ₃ Selenium Sulfonate: Synthesis of Trideuteromethylated Sulfides, Sulfoxides, and Selenides. Organic Letters, 2020, 22, 9128-9132.	2.4	25
39	Nickel-Catalyzed Direct Cross-Coupling of Aryl Sulfonium Salt with Aryl Bromide. Organic Letters, 2022, 24, 1953-1957.	2.4	25
40	Nickel-catalyzed direct cross-coupling of heterocyclic phosphonium salts with aryl bromides. Organic Chemistry Frontiers, 2021, 8, 6931-6936.	2.3	24
41	Synthesis of di(hetero)aryl sulfides by defluorinative sulfenylation of polyfluoroalkyl ketones with sodium sulfinates or arylsulfonyl chlorides. Chemical Communications, 2020, 56, 8699-8702.	2.2	23
42	Visible-Light-Triggered Sulfonylation/Aryl Migration/Desulfonylation and C–S/Se Bond Formation Reaction: 1,2,4-Trifunctionalization of Butenyl Benzothiazole Sulfone with Thiosulfonate/Selenosulfonates. Organic Letters, 2021, 23, 8246-8251.	2.4	23
43	Discovery of a small-molecule inhibitor of STAT3 by ligand-based pharmacophore screening. Methods, 2015, 71, 38-43.	1.9	22
44	Synthesis of highly substituted indene derivatives by BrÃ,nsted acid catalyzed Friedel–Crafts reaction of homoallylic alcohols. Tetrahedron Letters, 2014, 55, 3881-3884.	0.7	21
45	Pdâ€Catalyzed Oneâ€Pot Insertion Reaction of Cyclic <i>C</i> â€Acylimines into Carbonâ€Carbon Ïfâ€Bonds for t Synthesis of Polyfunctional Indolinâ€3â€ones from 2â€Alkynyl Arylazides and Aryl Ketones. Advanced Synthesis and Catalysis, 2019, 361, 201-207.	the 2.1	20
46	Synthesis of (Z)-1,2-dihydro-1-tosylbenzo[b]azepin-3-ones by two-step, one-pot gold-catalyzed tandem heterocyclization/Petasis–Ferrier rearrangement of 2-(N-(prop-2-ynyl)-N-tosylamino)benzaldehydes. Tetrahedron, 2013, 69, 5558-5565.	1.0	19
47	Gold-catalyzed formation of indole derivatives from 2-alkynyl arylazides and oxygen-containing heterocycles. RSC Advances, 2016, 6, 56319-56322.	1.7	19
48	Chemo―and Regioselective Ring Construction Driven by Visibleâ€Light Photoredox Catalysis: an Access to Fluoroalkylated Oxazolidines Featuring an Allâ€Substituted Carbon Stereocenter. Advanced Synthesis and Catalysis, 2019, 361, 4082-4090.	2.1	19
49	Gold Catalyzed Cyclopropanation/[5+3] Cycloaddition of 1,4,9―and 1,4,10â€Allenenynes to Bicyclo[3.3.1]nonane Derivatives. Advanced Synthesis and Catalysis, 2020, 362, 1084-1095.	2.1	19
50	Iron(0)-Mediated Reformatsky Reaction for the Synthesis of β-Hydroxyl Carbonyl Compounds. Organic Letters, 2019, 21, 5873-5878.	2.4	18
51	Lead-Mediated Highly Diastereoselective Allylation of Aldehydes with Cyclic Allylic Halides. Journal of Organic Chemistry, 2019, 84, 5348-5356.	1.7	18
52	Synthesis of Polycyclic Furan and Chromene Derivatives <i>via</i> Cascade Reactions Enabled by Cleavage of Multiple C(<i>sp</i> ³)â^'F Bonds. Advanced Synthesis and Catalysis, 2020, 362, 4736-4743.	2.1	18
53	Metal-Free Synthesis of <i>N</i> -(Carboselenoate) Benzimidazolones by Cascade Cyclization of <i>ortho</i> -Diisocyanoarenes and Selenosulfonates. Organic Letters, 2019, 21, 7687-7691.	2.4	17
54	Catalytic Enantioselective [2+2] Cycloaddition of αâ€Halo Acroleins: Construction of Cyclobutanes Containing Two Tetrasubstituted Stereocenters. Angewandte Chemie - International Edition, 2020, 59, 21890-21894.	7.2	17

#	Article	IF	CITATIONS
55	DBSAâ€Catalyzed Regioselective Dehydrative Friedelâ€Crafts Arylation of CF ₃ â€Containing 3â€Indolyl(2â€thiophenyl)methanols with 2â€Substituted Indoles in Water. Advanced Synthesis and Catalysis, 2020, 362, 1514-1524.	2.1	17
56	Silica Gel Mediated Friedel–Crafts Alkylation of 3â€Indolylmethanols with Indoles: Synthesis of Unsymmetrical Bis(3â€Indolyl)methanes. European Journal of Organic Chemistry, 2017, 2017, 2266-2271.	1.2	16
57	Goldâ€Catalyzed Chemoselective Synthesis of Heterocycles from 3â€(2â€Azidophenyl)propâ€2â€ynâ€1â€ols and Aldehydes. European Journal of Organic Chemistry, 2016, 2016, 4265-4268.	1.2	15
58	Gold atalyzed Dehydrogenative Cycloisomerization of 1,4â€Enyne Esters to 3,5â€Disubstituted Phenol Derivatives. Advanced Synthesis and Catalysis, 2017, 359, 4359-4368.	2.1	15
59	Synthesis of 1H-indole-3-sulfonates via palladium-catalyzed tandem reactions of 2-alkynyl arylazides with sulfonic acids. Organic and Biomolecular Chemistry, 2017, 15, 6080-6083.	1.5	15
60	Cold(I)â€Catalyzed Tandem Cycloisomerization and Fluorination of 1,3(4)â€Enyne Esters with NFSI: Oneâ€Pot Assembly of 5â€Fluoro―Cyclopentenones. Advanced Synthesis and Catalysis, 2018, 360, 3700-3708.	2.1	15
61	Iron-mediated highly diastereoselective allylation of carbonyl compounds with cyclic allylic halides. Organic Chemistry Frontiers, 2019, 6, 1581-1586.	2.3	15
62	Indium-mediated difunctionalization of iodoalkyl-tethered unactivated alkenes <i>via</i> an intramolecular cyclization and an ensuing palladium-catalyzed cross-coupling reaction with aryl halides. Organic Chemistry Frontiers, 2020, 7, 2703-2709.	2.3	15
63	Palladium-catalyzed defluorinative alkynylation of polyfluoroalkyl ketones with alkynes for the synthesis of fluorinated fused furans. Organic Chemistry Frontiers, 2021, 8, 572-578.	2.3	13
64	Unexpected iron(iii) chloride-catalysed dimerisation of 1,1,3-trisubstituted-prop-2-yn-1-ols as an expedient route to highly conjugated indenes. Organic and Biomolecular Chemistry, 2010, 8, 4016.	1.5	12
65	Transition-Metal-Free Decarboxylative Cyclization of <i>N</i> -Arylacrylamides with 2,2-Difluoro-2-(phenylthio)acetic Acid: Synthesis of Thiodifluorooxindole Derivatives. Journal of Organic Chemistry, 2021, 86, 8437-8447.	1.7	12
66	Goldâ€Catalyzed Cycloisomerization–Halogenation Sequence of 1,3â€Enyne Esters with NXS: Efficient Synthesis of 5â€Bromo/Iodo Cyclopentenones. European Journal of Organic Chemistry, 2019, 2019, 999-1007.	1.2	11
67	Copper-Catalyzed Chemoselective Cyclization Reaction of 2-Isocyanoacetophenone: Synthesis of 4-Hydroxyquinoline Compounds. Journal of Organic Chemistry, 2020, 85, 1279-1284.	1.7	11
68	Defluorinative phosphorylation of perfluoroalkyl ketones: synthesis of fluoroalkylated and phosphorylated furan derivatives. Organic Chemistry Frontiers, 2021, 8, 1503-1509.	2.3	11
69	Nickel-Catalyzed Reductive Thiolation of Unactivated Alkyl Bromides and Arenesulfonyl Cyanides. Journal of Organic Chemistry, 2021, 86, 8970-8979.	1.7	11
70	A Ni(<scp>ii</scp>)-catalyzed reductive cross-coupling reaction of oxalates and thiosulfonates/selenosulfonates. Organic Chemistry Frontiers, 2022, 9, 731-736.	2.3	11
71	Stereoselective synthesis of trans-î±-ketohydrazones from silyl enol ethers mediated by iodobenzene diacetate. Tetrahedron Letters, 2007, 48, 3789-3792.	0.7	9
72	Stereoselective synthesis of fluoroalkylated (<i>Z</i>)-alkene <i>via</i> nickel-catalyzed and iron-mediated hydrofluoroalkylation of alkynes. Organic Chemistry Frontiers, 2021, 8, 6377-6383.	2.3	9

#	Article	IF	CITATIONS
73	Fe–S Catalyst Generated In Situ from Fe(III)- and S ₃ ^{•–} -Promoted Aerobic Oxidation of Terminal Alkenes. Organic Letters, 2021, 23, 4705-4709.	2.4	9
74	Visible-light-promoted denitrogenative <i>ortho</i> -selenylation reaction of benzotriazinones: synthesis of <i>ortho</i> -selenylated benzamides and ebselen analogs. Organic Chemistry Frontiers, 2022, 9, 2418-2423.	2.3	9
75	Sc(OTf) ₃ -Catalyzed C2-Selective Cyanation/Defluorination Cascade of Perfluoroalkylated 3-Indolylmethanols and Application to the Synthesis of 3-Fluoro(perfluoroalkyl)-β-carbolines. Organic Letters, 2021, 23, 7666-7671.	2.4	8
76	Pdâ€Catalyzed Oneâ€Pot Twoâ€Step Synthesis of 2â€(1 <i>H</i> â€indolâ€3â€yl)â€2â€phenylindolinâ€3â€ones Arylazides and Indoles. ChemistrySelect, 2018, 3, 11696-11699.	from 2âŧ 0.7	€Alkynyl
77	Selective C(<i>sp</i> ³)â^'H Functionalization of Alkyl Esters with <i>N</i> â€i <i>S</i> â€i <i>O</i> â€Nucleophiles Using Perfluoroalkyl Iodide as Oxidant. Advanced Synthesis and Catalysis, 2020, 362, 3388-3394.	2.1	7
78	Synthesis of 2â€Phosphorylâ€3â€Monofluorovinylindoles under Catalyst―and Additiveâ€Free Conditions. Advanced Synthesis and Catalysis, 2021, 363, 3496-3501.	2.1	7
79	Cobalt-catalyzed cross-coupling of nitrogen-containing heterocyclic phosphonium salts with arylmagnesium reagents. Tetrahedron Letters, 2022, 92, 153662.	0.7	7
80	Catalyst- and additive-free Baeyer–Villiger-type oxidation of α-iodocyclopentenones to α-pyrones: using air as the oxidant. Green Chemistry, 2019, 21, 5611-5615.	4.6	6
81	Synthesis and Biological Activity of Novel Pinanyl Pyrazole Acetamide Derivatives. Chinese Journal of Organic Chemistry, 2017, 37, 218.	0.6	6
82	THF-enabled PtBr ₂ -catalyzed desymmetric hydrogenative [3 + 2] cycloaddition of 2-alkynylbenzaldehyde-tethered cyclohexadienones. Organic Chemistry Frontiers, 2022, 9, 3577-3584.	2.3	6
83	Goldâ€Catalyzed Sequential Cycloisomerization of 1,3,9â€Eneâ€alleneâ€ynes to Fused Spirocarbocycles. European Journal of Organic Chemistry, 2020, 2020, 5227-5233.	1.2	5
84	Gold―and BrÃ,nsted Acidâ€Catalysed Deacyloxylative Cycloaromatisation of 1,6â€Diyne Esters to 11 <i>H</i> â€Benzo[<i>a</i>]fluorenes and 13 <i>H</i> â€Indeno[1,2― <i>I</i>]phenanthrenes. Advanced Synthesis and Catalysis, 2022, 364, 1313-1318.	2.1	5
85	Iodine-Catalyzed Allylic Alkylation of Thiols with Allylic Alcohols. Synlett, 2008, 2008, 2204-2208.	1.0	4
86	Bismuth trichloride-catalyzed oxy-Michael addition of water and alcohol to α,β-unsaturated ketones. Chinese Chemical Letters, 2020, 31, 1297-1300.	4.8	4
87	Catalytic Enantioselective [2+2] Cycloaddition of αâ€Halo Acroleins: Construction of Cyclobutanes Containing Two Tetrasubstituted Stereocenters. Angewandte Chemie, 2020, 132, 22074-22078.	1.6	4
88	Progress of Nucleophilic Substitution of Allylic Alcohols. Chinese Journal of Organic Chemistry, 2015, 35, 2049.	0.6	4
89	Iron(0)-Mediated Henry-Type Reaction of Bromonitromethane with Aldehydes for the Efficient Synthesis of 2-Nitro-alkan-1-ols. Chinese Journal of Organic Chemistry, 2022, 42, 235.	0.6	4
90	Palladium-catalyzed cross-coupling of alkylindium reagent with diaryliodonium salt. Tetrahedron Letters, 2022, 95, 153729.	0.7	4

#	Article	IF	CITATIONS
91	Cesium carbonateâ€catalyzed indium insertion into alkyl iodides and their synthetic utilities in crossâ€coupling reactions. Applied Organometallic Chemistry, 2019, 33, e5110.	1.7	3
92	Copper(II)-catalyzed preparation of alkylindium compounds and applications in cross-coupling reactions both in aqueous media. Tetrahedron Letters, 2019, 60, 151288.	0.7	3
93	An efficient Bi/NH4I-mediated addition reaction for the highly diastereoselective synthesis of homoallylic alcohols in aqueous media. Chinese Chemical Letters, 2020, 31, 391-395.	4.8	3
94	Nal/TBHP-promoted reaction of indole-2-thiones with arylsulfonyl hydrazides: construction of achiral axial 3,3â€2-biindole-2,2â€2-dibenzenesulfonothioate derivatives. Organic Chemistry Frontiers, 2021, 8, 5383-5388.	2.3	3
95	Catalytic Diastereoselective Hetero-Diels–Alder Reaction of α-Haloacroleins with Alkenes: Construction of 3,4-Dihydropyran. Organic Letters, 2022, 24, 2115-2119.	2.4	3
96	Pharmacophore modeling for the identification of small-molecule inhibitors of TACE. Methods, 2015, 71, 92-97.	1.9	2
97	Cobalt(II)-catalyzed preparation of alkylindium reagents and applications in cross-coupling with aryl halides. Catalysis Communications, 2019, 132, 105824.	1.6	2
98	An efficient synthesis of 4,5-diaryl-3,4-dihydropyrimidin-2(1H)-one via a cesium carbonate-promoted direct condensation of 1-aryl-2-propanone with 1,1′-(arylmethylene)diurea. RSC Advances, 2020, 10, 30062-30068.	1.7	2
99	Iron(III)â€catalyzed difluoroalkylation of aryl alkynes with difluoroenol silyl ether in the presence of trimethylsilyl chloride. Advanced Synthesis and Catalysis, 0, , .	2.1	2
100	Triflic Acid-Catalyzed Tandem Reactions of Cyclopropyl Alcohols with Sulfonamides for the Synthesis of Pyrrolidines. Chinese Journal of Organic Chemistry, 2015, 35, 1500.	0.6	1