

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5309243/publications.pdf Version: 2024-02-01

		147801	155660
119	3,708	31	55
papers	citations	h-index	g-index
121	121	121	1429
all docs	docs citations	times ranked	citing authors

Vonclu

#	Article	IF	CITATIONS
1	Nonreciprocal light transmission via optomechanical parametric interactions. Optics Letters, 2022, 47, 1182.	3.3	7
2	Enantiodetection of cyclic three-level chiral molecules in a driven cavity. Physical Review Research, 2022, 4, .	3.6	10
3	Enantiospecific state transfer for gaseous symmetric-top chiral molecules. Physical Review A, 2022, 105, .	2.5	3
4	Dynamically producing asymmetric interferometric power under dephasing. Physical Review A, 2022, 105, .	2.5	1
5	Dynamical emission of phonon pairs in optomechanical systems. Physical Review A, 2022, 105, .	2.5	6
6	Probing Dynamical Anderson Transition in a Periodicallyâ€Driven Lattice by Statistical Measures. Annalen Der Physik, 2022, 534, .	2.4	0
7	Giant Atoms in a Synthetic Frequency Dimension. Physical Review Letters, 2022, 128, .	7.8	36
8	Giant atoms with time-dependent couplings. Physical Review Research, 2022, 4, .	3.6	24
9	Controllable optical response and tunable sensing based on self interference in waveguide QED systems. Optics Express, 2021, 29, 3038.	3.4	11
10	Engineering optomechanical entanglement via dual-mode cooling with a single reservoir. Physical Review A, 2021, 103, .	2.5	12
11	Enantio-conversion of chiral mixtures via optical pumping. Physical Review A, 2021, 103, .	2.5	15
12	Coherent phonon-mediated dynamics for an addressable transducer of coupled micro-mechanical resonators. Applied Physics Letters, 2021, 118, .	3.3	4
13	Single-photon nonreciprocal excitation transfer with non-Markovian retarded effects. Physical Review A, 2021, 103, .	2.5	27
14	Spatial enantioseparation of gaseous chiral molecules. Physical Review A, 2021, 104, .	2.5	14
15	An improved laser-distillation method for complete enantio-conversion of chiral mixtures. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 145102.	1.5	6
16	Single-photon frequency conversion via a giant <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi mathvariant="normal">î> -type atom. Physical Review A, 2021, 104, .</mml:mi </mml:math 	2.5	30
17	Enantio-detection via cavity-assisted three-photon processes. Optics Express, 2021, 29, 36132.	3.4	7
18	Geometric motion transfer between two indirectly coupled mechanical resonators. Applied Physics Letters, 2021, 119, 143504.	3.3	1

#	Article	IF	CITATIONS
19	Nonreciprocal frequency conversion with chiral <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">ĥ -type atoms. Physical Review Research, 2021, 3, .</mml:mi </mml:math 	3.6	28
20	Enantiomeric-excess determination based on nonreciprocal-transition-induced spectral-line elimination. Physical Review A, 2020, 102, .	2.5	12
21	Enantio-discrimination via light deflection effect. Journal of Chemical Physics, 2020, 152, 204305.	3.0	21
22	Nonreciprocity via Nonlinearity and Synthetic Magnetism. Physical Review Applied, 2020, 13, .	3.8	42
23	Switchable bipartite and genuine tripartite entanglement via an optoelectromechanical interface. Physical Review A, 2020, 101, .	2.5	11
24	Connecting quantum steering with extractable work in a two-mode Gaussian state. European Physical Journal D, 2020, 74, 1.	1.3	5
25	Evading thermal population influence on enantiomeric-specific state transfer based on a cyclic three-level system via ro-vibrational transitions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 235103.	1.5	12
26	Fast enantioconversion of chiral mixtures based on a four-level double- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">î" model. Physical Review Research, 2020, 2, .</mml:mi </mml:math 	3.6	19
27	Nonreciprocal interference and coherent photon routing in a three-port optomechanical system. Optics Express, 2020, 28, 3647.	3.4	10
28	Overcoming standard quantum limit using a momentum measuring interferometer. Optics Letters, 2020, 45, 1256.	3.3	4
29	Overcoming standard quantum limit using a momentum measuring interferometer: publisher's note. Optics Letters, 2020, 45, 2172.	3.3	0
30	Controllable optical response in a three-mode optomechanical system by driving the cavities on different sidebands. Optics Express, 2019, 27, 21843.	3.4	4
31	Utilizing competitions between optical parametric amplifications and dissipations to manipulate photon transport. Physical Review A, 2019, 100, .	2.5	4
32	Manifestation of classical nonlinear dynamics in optomechanical entanglement with a parametric amplifier. Physical Review A, 2019, 100, .	2.5	21
33	Effective two-level models for highly efficient inner-state enantioseparation based on cyclic three-level systems of chiral molecules. Physical Review A, 2019, 100, .	2.5	25
34	Phase-controlled single-photon nonreciprocal transmission in a one-dimensional waveguide. Physical Review A, 2019, 100, .	2.5	18
35	Unidirectional gyroscope using optomechanics to avoid mode-locking. Journal of Optics (United) Tj ETQq1 1 0	.784314 rgB 2.2	T /Overlock 1
36	Optimal unidirectional amplification induced by optical gain in optomechanical systems. Physical Review A, 2019, 100, .	2.5	13

3

#	Article	IF	CITATIONS
37	Determination of enantiomeric excess with chirality-dependent ac Stark effects in cyclic three-level models. Physical Review A, 2019, 100, .	2.5	29
38	Static nonlinear Schrödinger equations for the achiral-chiral transitions of polar chiral molecules. Physical Review A, 2019, 99, .	2.5	3
39	Collective radiance effects in the ultrastrong-coupling regime. Physical Review A, 2019, 99, .	2.5	28
40	Geometric Energy Transfer in a Stückelberg Interferometer of Two Parametrically Coupled Mechanical Modes. Physical Review Applied, 2019, 11, .	3.8	6
41	Directional phase-sensitive amplifier between microwave and optical photons. Physical Review A, 2019, 99, .	2.5	16
42	Optomechanical transistor with mechanical gain. Physical Review A, 2018, 97, .	2.5	32
43	Targeted photonic routers with chiral photon-atom interactions. Physical Review A, 2018, 97, .	2.5	66
44	Enhancing optical nonreciprocity by an atomic ensemble in two coupled cavities. Optics Communications, 2018, 415, 39-42.	2.1	7
45	Tunable optical nonreciprocity and a phonon-photon router in an optomechanical system with coupled mechanical and optical modes. Physical Review A, 2018, 97, .	2.5	33
46	Optomechanically induced nonreciprocity in a three-mode optomechanical system. Physical Review A, 2018, 98, .	2.5	38
47	Real single-loop cyclic three-level configuration of chiral molecules. Physical Review A, 2018, 98, .	2.5	38
48	Shot-noise-limited interferometry for measuring a classical force. Physical Review A, 2018, 98, .	2.5	3
49	Detection of emitter-resonator coupling strength in the quantum Rabi model via an auxiliary resonator. Physical Review A, 2018, 98, .	2.5	3
50	Coriolis-force-induced coupling between two modes of a mechanical resonator for detection of angular velocity. Physical Review A, 2018, 98, .	2.5	7
51	Coherent Optomechanical Switch for Motion Transduction Based on Dynamically Localized Mechanical Modes. Physical Review Applied, 2018, 9, .	3.8	16
52	Improving optomechanical gyroscopes by coherent quantum noise cancellation processing. Science China: Physics, Mechanics and Astronomy, 2018, 61, 1.	5.1	16
53	Twofold mechanical squeezing in a cavity optomechanical system. Physical Review A, 2018, 98, .	2.5	32
54	Directional amplifier in an optomechanical system with optical gain. Physical Review A, 2018, 97, .	2.5	48

#	Article	IF	CITATIONS
55	Three-mode optomechanical system for angular velocity detection. Chinese Physics B, 2018, 27, 084203.	1.4	4
56	Partially dark optical molecule via phase control. Physical Review A, 2017, 95, .	2.5	7
57	Quantum signature for laser-driven correlated excitation of Rydberg atoms. Physical Review A, 2017, 95, .	2.5	7
58	Nonreciprocal single-photon frequency converter via multiple semi-infinite coupled-resonator waveguides. Physical Review A, 2017, 96, .	2.5	18
59	Single-photon nonreciprocal transport in one-dimensional coupled-resonator waveguides. Physical Review A, 2017, 95, .	2.5	31
60	Gyroscope with two-dimensional optomechanical mirror. New Journal of Physics, 2017, 19, 113004.	2.9	20
61	Optical directional amplification in a three-mode optomechanical system. Optics Express, 2017, 25, 18907.	3.4	61
62	Casimir switch: steering optical transparency with vacuum forces. Scientific Reports, 2016, 6, 27102.	3.3	22
63	The energy-level crossing behavior and quantum Fisher information in a quantum well with spin-orbit coupling. Scientific Reports, 2016, 6, 22347.	3.3	23
64	Absolute rotation detection by Coriolis force measurement using optomechanics. New Journal of Physics, 2016, 18, 103047.	2.9	15
65	Coherent state transfer through a multi-channel quantum network: Natural versus controlled evolution passage. Science China: Physics, Mechanics and Astronomy, 2016, 59, 1.	5.1	10
66	Nonreciprocal conversion between microwave and optical photons in electro-optomechanical systems. Physical Review A, 2016, 93, .	2.5	103
67	Optimal quantum parameter estimation in a pulsed quantum optomechanical system. Physical Review A, 2016, 93, .	2.5	29
68	Detecting macroscopic quantum coherence with a cavity optomechanical system. Physical Review A, 2016, 94, .	2.5	40
69	Robust Multiple-Range Coherent Quantum State Transfer. Scientific Reports, 2016, 6, 28886.	3.3	8
70	Classical analog of Stückelberg interferometry in a two-coupled-cantilever–based optomechanical system. Physical Review A, 2016, 94, .	2.5	18
71	Optical nonreciprocity and optomechanical circulator in three-mode optomechanical systems. Physical Review A, 2015, 91, .	2.5	147
72	Mechanical <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi </mml:math> symmetry in coupled optomechanical systems. Physical Review A, 2015, 92, .	2.5	120

#	Article	IF	CITATIONS
73	Controllable optical output fields from an optomechanical system with mechanical driving. Physical Review A, 2015, 92, .	2.5	54
74	Generation of stable entanglement between two cavity mirrors by squeezed-reservoir engineering. Physical Review A, 2015, 92, .	2.5	40
75	Duality and bistability in an optomechanical cavity coupled to a Rydberg superatom. Physical Review A, 2015, 91, .	2.5	30
76	Microwave degenerate parametric down-conversion with a single cyclic three-level system in a circuit-QED setup. Physical Review A, 2015, 91, .	2.5	25
77	Dissipation and decoherence induced by collective dephasing in a coupled-qubit system with a common bath. Physical Review A, 2015, 91, .	2.5	9
78	Optomechanically induced amplification and perfect transparency in double-cavity optomechanics. Frontiers of Physics, 2015, 10, 351-357.	5.0	32
79	Manipulating a micro-cantilever between its optomechanical bistable states in a lever-based Fabry-PA©rot cavity. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-5.	5.1	4
80	Phase-dependent optical response properties in an optomechanical system by coherently driving the mechanical resonator. Physical Review A, 2015, 91, .	2.5	85
81	Generating the Schrödinger cat state in a nanomechanical resonator coupled to a charge qubit. Annalen Der Physik, 2015, 527, 180-186.	2.4	17
82	Controllable single-photon frequency converter via a one-dimensional waveguide. Physical Review A, 2014, 89, .	2.5	63
83	Tunable photon statistics in weakly nonlinear photonic molecules. Physical Review A, 2014, 90, .	2.5	76
84	Effect of atomic distribution on cooperative spontaneous emission. Physical Review A, 2014, 89, .	2.5	25
85	Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system. Physical Review A, 2014, 90, .	2.5	149
86	Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a weakly nonlinear cavity. Physical Review A, 2014, 90, .	2.5	32
87	Strong photon antibunching of symmetric and antisymmetric modes in weakly nonlinear photonic molecules. Physical Review A, 2014, 90, .	2.5	76
88	Optically mediated spatial localization of collective modes of two coupled cantilevers for high sensitivity optomechanical transducer. Applied Physics Letters, 2014, 105, 014108.	3.3	24
89	Dynamics of quantum zeno and anti-zeno effects in an open system. Science China: Physics, Mechanics and Astronomy, 2014, 57, 194-207.	5.1	18
90	Indirect driving of a cavity-QED system and its induced nonlinearity. Physical Review A, 2014, 90, .	2.5	7

#	Article	IF	CITATIONS
91	Generating large steady-state optomechanical entanglement by the action of Casimir force. Science China: Physics, Mechanics and Astronomy, 2014, 57, 2276-2284.	5.1	27
92	Optimal quantum channel estimation of two interacting qubits subject to decoherence. European Physical Journal D, 2014, 68, 1.	1.3	24
93	An impurity-induced gap system as a quantum data bus for quantum state transfer. Annals of Physics, 2014, 348, 278-288.	2.8	6
94	Collective effects of multiscattering on the coherent propagation of photons in a two-dimensional network. Physical Review A, 2013, 88, .	2.5	12
95	Cooperative spontaneous emission of three identical atoms. Physical Review A, 2013, 88, .	2.5	16
96	Cooling a charged mechanical resonator with time-dependent bias gate voltages. Journal of Physics Condensed Matter, 2013, 25, 142201.	1.8	13
97	Spectrum of collective spontaneous emission beyond the rotating-wave approximation. Physical Review A, 2013, 87, .	2.5	25
98	Quantum Routing of Single Photons with a Cyclic Three-Level System. Physical Review Letters, 2013, 111, 103604.	7.8	229
99	Fast optical cooling of nanomechanical cantilever with the dynamical Zeeman effect. Optics Express, 2013, 21, 29695.	3.4	29
100	Electromagnetically-induced-transparency–like phenomenon with two atomic ensembles in a cavity. Physical Review A, 2013, 88, .	2.5	21
101	Dynamics of a levitated nanosphere by optomechanical coupling and Casimir interaction. Physical Review A, 2013, 88, .	2.5	23
102	Precision measurement of electrical charge with optomechanically induced transparency. Physical Review A, 2012, 86, .	2.5	203
103	Effect of the Casimir force on the entanglement between a levitated nanosphere and cavity modes. Physical Review A, 2012, 86, .	2.5	26
104	Single-photon scattering on a strongly dressed atom. Physical Review A, 2012, 86, .	2.5	36
105	Collective spontaneous emission beyond the rotating-wave approximation. Physical Review A, 2012, 85, .	2.5	27
106	Fast ground-state cooling of mechanical resonators with time-dependent optical cavities. Physical Review A, 2011, 83, .	2.5	113
107	Nondeterministic ultrafast ground-state cooling of a mechanical resonator. Physical Review B, 2011, 84, .	3.2	55
108	Quantum anti-Zeno effect without rotating wave approximation. Physical Review A, 2010, 81, .	2.5	89

#	Article	IF	CITATIONS
109	Cooling a micromechanical resonator by quantum back-action from a noisy qubit. Physical Review B, 2009, 80, .	3.2	25
110	Dynamic sensitivity of photon-dressed atomic ensemble with quantum criticality. Physical Review A, 2009, 80, .	2.5	24
111	Quantum theory of transmission line resonator-assisted cooling of a micromechanical resonator. Physical Review B, 2008, 78, .	3.2	54
112	Dynamic method to distinguish between left- and right-handed chiral molecules. Physical Review A, 2008, 77, .	2.5	56
113	Analogue of cavity quantum electrodynamics for coupling between spin and a nanomechanical resonator: Dynamic squeezing and coherent manipulations. Physical Review B, 2007, 75, .	3.2	26
114	Generalized Stern-Gerlach Effect for Chiral Molecules. Physical Review Letters, 2007, 99, 130403.	7.8	112
115	Time-dependent Fröhlich transformation approach for two-atom entanglement generated by successive passage through a cavity. Physical Review A, 2007, 75, .	2.5	17
116	Correlated photons and collective excitations of a cyclic atomic ensemble. Physical Review A, 2006, 73, .	2.5	21
117	Quantum criticality in a generalized Dicke model. Physical Review A, 2006, 74, .	2.5	31
118	Transient Dynamics of Light Propagation in Λ-Atom EIT Medium. Communications in Theoretical Physics, 2005, 44, 356-364.	2.5	2
119	Quantum-state transfer characterized by mode entanglement. Physical Review A, 2005, 72, .	2.5	24 _