Roberto Fiammengo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5309229/publications.pdf

Version: 2024-02-01

40 papers

2,318 citations

28 h-index 315357 38 g-index

42 all docs

42 docs citations

42 times ranked 3826 citing authors

#	Article	IF	CITATIONS
1	Absolute and Direct MicroRNA Quantification Using DNA–Gold Nanoparticle Probes. Journal of the American Chemical Society, 2014, 136, 2264-2267.	6.6	355
2	InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: in vitro and in vivo toxicity assessment. Nanoscale, 2013, 5, 307-317.	2.8	281
3	Guest Encapsulation and Self-Assembly of Molecular Capsules in Polar Solvents via Multiple Ionic Interactions. Journal of the American Chemical Society, 2002, 124, 6569-6575.	6.6	122
4	Allylic Amination by a DNA–Diene–Iridium(I) Hybrid Catalyst. Angewandte Chemie - International Edition, 2009, 48, 4426-4429.	7.2	119
5	Gold-Nanoparticle-Based Colorimetric Discrimination of Cancer-Related Point Mutations with Picomolar Sensitivity. ACS Nano, 2013, 7, 5530-5538.	7.3	101
6	Conjugation of Peptides to the Passivation Shell of Gold Nanoparticles for Targeting of Cell-Surface Receptors. ACS Nano, 2010, 4, 6617-6628.	7.3	94
7	Impact of substrate elasticity on human hematopoietic stem and progenitor cell adhesion and motility. Journal of Cell Science, 2012, 125, 3765-75.	1.2	90
8	Polymeric Substrates with Tunable Elasticity and Nanoscopically Controlled Biomolecule Presentation. Langmuir, 2010, 26, 15472-15480.	1.6	75
9	Metallodendrimers as Transphosphorylation Catalysts. Journal of the American Chemical Society, 2007, 129, 6982-6983.	6.6	65
10	Nucleic acid enzymes. Current Opinion in Biotechnology, 2005, 16, 614-21.	0.0	61
		3.3	
11	Nanotechnologyâ€Based Strategies for the Detection and Quantification of MicroRNA. Chemistry - A European Journal, 2014, 20, 9476-9492.	1.7	56
11	Nanotechnologyâ€Based Strategies for the Detection and Quantification of MicroRNA. Chemistry - A		
	Nanotechnologyâ€Based Strategies for the Detection and Quantification of MicroRNA. Chemistry - A European Journal, 2014, 20, 9476-9492.	1.7	56
12	Nanotechnologyâ€Based Strategies for the Detection and Quantification of MicroRNA. Chemistry - A European Journal, 2014, 20, 9476-9492. Direct-written polymer field-effect transistors operating at 20 MHz. Scientific Reports, 2016, 6, 38941. Quantification and Reactivity of Functional Groups in the Ligand Shell of PEGylated Gold	1.7	56 54
12	Nanotechnologyâ€Based Strategies for the Detection and Quantification of MicroRNA. Chemistry - A European Journal, 2014, 20, 9476-9492. Direct-written polymer field-effect transistors operating at 20 MHz. Scientific Reports, 2016, 6, 38941. Quantification and Reactivity of Functional Groups in the Ligand Shell of PEGylated Gold Nanoparticles via a Fluorescence-Based Assay. Langmuir, 2009, 25, 7910-7917. Structure-Based Design of Potent Tumor-Associated Antigens: Modulation of Peptide Presentation by Single-Atom O/S or O/Se Substitutions at the Glycosidic Linkage. Journal of the American Chemical	1.7 1.6	56 54 53
12 13 14	Nanotechnologyâ€Based Strategies for the Detection and Quantification of MicroRNA. Chemistry - A European Journal, 2014, 20, 9476-9492. Direct-written polymer field-effect transistors operating at 20 MHz. Scientific Reports, 2016, 6, 38941. Quantification and Reactivity of Functional Groups in the Ligand Shell of PEGylated Gold Nanoparticles via a Fluorescence-Based Assay. Langmuir, 2009, 25, 7910-7917. Structure-Based Design of Potent Tumor-Associated Antigens: Modulation of Peptide Presentation by Single-Atom O/S or O/Se Substitutions at the Glycosidic Linkage. Journal of the American Chemical Society, 2019, 141, 4063-4072. Wearable piezoelectric mass sensor based on pH sensitive hydrogels for sweat pH monitoring.	1.7 1.6 1.6 6.6	56545351
12 13 14	Nanotechnologyâ€Based Strategies for the Detection and Quantification of MicroRNA. Chemistry - A European Journal, 2014, 20, 9476-9492. Direct-written polymer field-effect transistors operating at 20 MHz. Scientific Reports, 2016, 6, 38941. Quantification and Reactivity of Functional Groups in the Ligand Shell of PEGylated Gold Nanoparticles via a Fluorescence-Based Assay. Langmuir, 2009, 25, 7910-7917. Structure-Based Design of Potent Tumor-Associated Antigens: Modulation of Peptide Presentation by Single-Atom O/S or O/Se Substitutions at the Glycosidic Linkage. Journal of the American Chemical Society, 2019, 141, 4063-4072. Wearable piezoelectric mass sensor based on pH sensitive hydrogels for sweat pH monitoring. Scientific Reports, 2020, 10, 10854.	1.7 1.6 1.6 6.6	5654535150

#	Article	IF	CITATIONS
19	Glycopeptide-functionalized gold nanoparticles for antibody induction against the tumor associated mucin-1 glycoprotein. Bioorganic and Medicinal Chemistry, 2016, 24, 1132-1135.	1.4	46
20	Allosterically Activated Dielsâ^'Alder Catalysis by a Ribozyme. Journal of the American Chemical Society, 2005, 127, 10492-10493.	6.6	45
21	Efficient Preparation of Organic Substrateâ^'RNA Conjugates via in Vitro Transcription. Journal of the American Chemical Society, 2005, 127, 9271-9276.	6.6	44
22	Recognition of Caffeine in Aqueous Solutions. Chemistry - A European Journal, 2003, 9, 784-792.	1.7	41
23	Highly stable cage-like complexes by self-assembly of tetracationic Zn(II) porphyrinates and tetrasulfonatocalix[4] arenes in polar solvents. Chemical Communications, 2000, , 2313-2314.	2.2	39
24	Noncovalent Secondary Interactions in Co(II)Salen Complexes:Â O2Binding and Catalytic Activity in Cyclohexene Oxygenation. Journal of Organic Chemistry, 2002, 67, 8552-8557.	1.7	34
25	Non-covalent synthesis of calix[4]arene-capped porphyrins in polar solvents via ionic interactions. Tetrahedron, 2002, 58, 757-764.	1.0	34
26	Heme-Protein Active Site Models via Self-Assembly in Water. Organic Letters, 2003, 5, 3367-3370.	2.4	34
27	Microfabrication of pH-responsive 3D hydrogel structures via two-photon polymerization of high-molecular-weight poly(ethylene glycol) diacrylates. Sensors and Actuators B: Chemical, 2019, 279, 418-426.	4.0	34
28	Inhibition of Leptin–ObR Interaction Does not Prevent Leptin Translocation Across a Human Blood–Brain Barrier Model. Journal of Neuroendocrinology, 2016, 28, .	1.2	28
29	Reversible site-specific tagging of enzymatically synthesized RNAs using aldehyde–hydrazine chemistry and protease-cleavable linkers. Nucleic Acids Research, 2007, 35, e25.	6.5	27
30	Duality of Mechanism in the Tetramethylfluoroformamidinium Hexafluorophosphate-Mediated Synthesis of N-Benzyloxycarbonylamino Acid Fluorides. Journal of Organic Chemistry, 2001, 66, 5905-5910.	1.7	25
31	Mag: a Cα-Methylated, Side-chain Unsaturated α-Amino Acid. Introduction into Model Peptides and Conformational Preference. Tetrahedron, 2000, 56, 3589-3601.	1.0	18
32	Gold Nanoparticles Functionalized with RGDâ€Semipeptides: A Simple yet Highly Effective Targeting System for α _V β ₃ Integrins. Chemistry - A European Journal, 2018, 24, 12093-12100.	1.7	17
33	Complexation of Porphyrin-Appended Guests by Calix[4]arene-Appended Cyclodextrins. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2001, 41, 163-172.	1.6	15
34	Structural characterization of an unprecedented lectin-like antitumoral anti-MUC1 antibody. Chemical Communications, 2020, 56, 15137-15140.	2.2	10
35	Conopeptide-Functionalized Nanoparticles Selectively Antagonize Extrasynaptic <i>N</i> -Methyl- <scp>d</scp> -aspartate Receptors and Protect Hippocampal Neurons from Excitotoxicity <i>In Vitro</i> . ACS Nano, 2020, 14, 6866-6877.	7.3	10
36	Directional Immobilization of Proteins on Gold Nanoparticles Is Essential for Their Biological Activity: Leptin as a Case Study. Bioconjugate Chemistry, 2020, 31, 74-81.	1.8	5

3

#	Article	IF	CITATION
37	Label-free biomechanical nanosensor based on LSPR for biological applications. Optical Materials Express, 2020, 10, 1264.	1.6	4
38	Mimicking the Cellular Environment: Effects of Elastic Nanopatterned Substrates on Integrin-Mediated Cellular Interactions. Biophysical Journal, 2010, 98, 729a.	0.2	0
39	Reply to Comment on Conopeptide-Functionalized Nanoparticles Selectively Antagonize Extrasynaptic N-Methyl-d-aspartate Receptors and Protect Hippocampal Neurons from Excitotoxicity In Vitro. ACS Nano, 2021, 15, 15409-15417.	7.3	0
40	Impact of substrate elasticity on human hematopoietic stem and progenitor cell adhesion and motility. Development (Cambridge), 2012, 139, e1-e1.	1.2	0