
Mingxiang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5309149/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ambient instability of organic field-effect transistors and their improvement strategies. Journal Physics D: Applied Physics, 2022, 55, 053001.	2.8	8
2	Statistical Study of Degradation of Flexible Poly-Si TFTs Under Dynamic Bending Stress. IEEE Journal of the Electron Devices Society, 2022, 10, 123-128.	2.1	3
3	Origin of Degradation of Flexible Poly-Si TFTs Under Dynamic Bending Stress. IEEE Electron Device Letters, 2021, 42, 1627-1630.	3.9	8
4	Investigations on the Negative Shift of the Threshold Voltage of Polycrystalline Silicon Thin-Film Transistors Under Positive Gate Bias Stress. IEEE Transactions on Electron Devices, 2021, 68, 550-555.	3.0	3
5	A Unified Degradation Model of Elevated-Metal Metal Oxide (EMMO) TFTs Under Positive Gate Bias With or Without an Illumination. IEEE Transactions on Electron Devices, 2021, 68, 1081-1087.	3.0	6
6	Roles of Gate Voltage and Stress Power in Self-Heating Degradation of a-InGaZnO Thin-Film Transistors. IEEE Transactions on Electron Devices, 2021, 68, 1644-1648.	3.0	10
7	Enhanced Thermal Stability of Elevated-Metal Metal-Oxide Thin-Film Transistors via Low-Temperature Nitrogen Post-Annealing. IEEE Transactions on Electron Devices, 2021, 68, 1649-1653.	3.0	16
8	Hot-Carrier Effects in a-InGaZnO Thin-Film Transistors Under Pulse Drain Bias Stress. IEEE Transactions on Electron Devices, 2021, 68, 2742-2747.	3.0	8
9	Statistical Analysis of Degradation and Failure of Flexible LTPS TFTs under Dynamic Mechanical Stress. , 2021, , .		0
10	Degradation and Failure of Flexible Low-Temperature Poly-Si TFTs Under Dynamic Stretch Stress. IEEE Transactions on Electron Devices, 2021, 68, 4455-4461.	3.0	6
11	High-Mobility Amorphous InGaZnO Thin-Film Transistors With Nitrogen Introduced via Low-Temperature Annealing. IEEE Electron Device Letters, 2021, 42, 1480-1483.	3.9	13
12	Thermal Annealing Improved Stability of Amorphous InGaZnO Thin-Film Transistors Under AC Bias Stresses. IEEE Electron Device Letters, 2021, 42, 1623-1626.	3.9	6
13	Gate Voltage Pulse Rising Edge Dependent Dynamic Hot Carrier Degradation in Poly-Si Thin-Film Transistors. IEEE Electron Device Letters, 2021, 42, 1615-1618.	3.9	4
14	Bilayer-passivated stable dif-TES-ADT organic thin-film transistors. Applied Physics Letters, 2021, 119, 183301.	3.3	4
15	A Physical-Based Analytical Model for the Kink Current of Polycrystalline Silicon TFTs. IEEE Transactions on Electron Devices, 2020, 67, 2359-2364.	3.0	1
16	Investigation of the anomalous hump phenomenon in amorphous InGaZnO thin-film transistors. Solid-State Electronics, 2020, 170, 107814.	1.4	7
17	Suppression of the Short-Channel Effect in Dehydrogenated Elevated-Metal Metal- Oxide (EMMO) Thin-Film Transistors. IEEE Transactions on Electron Devices, 2020, 67, 3001-3004.	3.0	14
18	Origin of Spontaneous Degradation of Flexible Poly-Si TFTs After Dynamic Bending. IEEE Electron Device Letters, 2020, 41, 1205-1208.	3.9	6

MINGXIANG WANG

#	Article	IF	CITATIONS
19	A systematic study of light dependency of persistent photoconductivity in a-InGaZnO thin-film transistors*. Chinese Physics B, 2020, 29, 118101.	1.4	9
20	Reliability of Flexible LTPS TFTs under Dynamic Mechanical Stress. , 2020, , .		1
21	A Unified Degradation Model of a-InGaZnO TFTs Under Negative Gate Bias With or Without an Illumination. IEEE Journal of the Electron Devices Society, 2019, 7, 1063-1071.	2.1	19
22	TCAD Analysis of the Four-Terminal Poly-Si TFTs on Suppression Mechanisms of the DC and AC Hot-Carrier Degradation. IEEE Journal of the Electron Devices Society, 2019, 7, 606-612.	2.1	8
23	Spontaneous Degradation of Flexible Poly-Si TFTs Subject to Dynamic Bending Stress. IEEE Transactions on Electron Devices, 2019, 66, 2214-2218.	3.0	15
24	Degradation of a-InGaZnO TFTs Under Synchronized Gate and Drain Voltage Pulses. IEEE Transactions on Electron Devices, 2018, 65, 995-1001.	3.0	8
25	Suppressed Degradation of Elevated-Metal Metal–Oxide Thin-Film Transistors Under Bipolar Gate Pulse Stress. IEEE Electron Device Letters, 2018, 39, 707-710.	3.9	11
26	A comparative study of n-channel low temperature poly-Si thin-film transistors with a body terminal or a lightly-doped-drain structure. Semiconductor Science and Technology, 2018, 33, 025003.	2.0	7
27	Degradation of Elevated-Metal Metal-Oxide Thin-Film Transistors Under AC Bias Stress. , 2018, , .		1
28	Mechanical Reliability of Flexible a-InGaZnO TFTs under Dynamic Stretch Stress. IEEE Transactions on Electron Devices, 2018, 65, 2863-2869.	3.0	12
29	Reliability of low-temperature polysilicon thin-film transistors for flexible electronics application. , 2016, , .		7
30	Degradation of low temperature poly-Si TFTs under bipolar gate pulses with DC drain bias. , 2016, , .		4
31	Investigations on the Gate-Induced Drain Leakage Current of Polycrystalline-Silicon Thin-Film Transistor and Its Suppression With Drain Bias Sweep. IEEE Transactions on Electron Devices, 2016, 63, 1572-1577.	3.0	5
32	Dynamic degradation of a-InGaZnO thin-film transistors under pulsed gate voltage stress. Applied Physics Letters, 2015, 106, .	3.3	19
33	Two-Stage Degradation of p-Type Polycrystalline Silicon Thin-Film Transistors Under Dynamic Positive Bias Temperature Stress. IEEE Transactions on Electron Devices, 2014, 61, 3751-3756.	3.0	8
34	An Analytical Subthreshold Model of Polycrystalline Silicon Thin-Film Transistors Based on Meyer-Neldel Rule. IEEE Transactions on Electron Devices, 2014, 61, 863-869.	3.0	14
35	Suppress Dynamic Hot-Carrier Induced Degradation in Polycrystalline Si Thin-Film Transistors by Using a Substrate Terminal. IEEE Electron Device Letters, 2014, 35, 551-553.	3.9	12
36	Dynamic HC-induced degradation in n-type poly-Si thin film transistors under off-state gate pulse voltage. , 2013, , .		5

MINGXIANG WANG

#	Article	IF	CITATIONS
37	Dynamic degradation mechanisms of low temperature polycrystalline silicon thin-film transistors. , 2012, , .		4
38	Analysis of Degradation Mechanisms in Low-Temperature Polycrystalline Silicon Thin-Film Transistors under Dynamic Drain Stress. IEEE Transactions on Electron Devices, 2012, 59, 1730-1737.	3.0	33
39	Negative drain pulse stress induced two-stage degradation of P-channel poly-Si thin-film transistors. , 2011, , .		3
40	Two-Stage Degradation of p-Channel Poly-Si Thin-Film Transistors Under Dynamic Negative Bias Temperature Stress. IEEE Transactions on Electron Devices, 2011, 58, 3034-3041.	3.0	18
41	A Two-Stage Degradation Model of p-Channel Low-Temperature Poly-Si Thin-Film Transistors Under Positive Bias Temperature Stress. IEEE Transactions on Electron Devices, 2011, 58, 3501-3505.	3.0	8
42	An investigation of drain pulse induced hot carrier degradation in n-type low temperature polycrystalline silicon thin film transistors. Microelectronics Reliability, 2010, 50, 713-716.	1.7	13
43	Characterization of hot carrier degradation in n-type poly-Si TFTs under dynamic drain pulse Stress with DC gate bias. , 2010, , .		3
44	Comparison of device degradation of n-type metal-induced laterally crystallized poly-Si TFTs with or without hydrogenation. , 2009, , .		5
45	Observation of combined self-heating and hot-carrier degradation in n-type poly-Si thin-film transistors. , 2009, , .		1
46	Negative Bias Temperature Instability Dominated Degradation of Metal-Induced Laterally Crystallized p-Type Polycrystalline Silicon Thin-Film Transistors. IEEE Transactions on Electron Devices, 2009, 56, 587-594.	3.0	27
47	Degradation of Metal-Induced Laterally Crystallized n-Type Polycrystalline Silicon Thin-Film Transistors Under Synchronized Voltage Stress. IEEE Transactions on Electron Devices, 2009, 56, 2726-2732.	3.0	23
48	Finite element analysis of temperature distribution of polycrystalline silicon thin film transistors under self-heating stress. Frontiers of Electrical and Electronic Engineering in China: Selected Publications From Chinese Universities, 2009, 4, 227-233.	0.6	6
49	Degradation Behaviors of Metal-Induced Laterally Crystallized n-Type Polycrystalline Silicon Thin-Film Transistors Under DC Bias Stresses. IEEE Transactions on Electron Devices, 2007, 54, 225-232.	3.0	46
50	An Effective Channel Mobility-Based Analytical On-Current Model for Polycrystalline Silicon Thin-Film Transistors. IEEE Transactions on Electron Devices, 2007, 54, 869-874.	3.0	41
51	Stress Power Dependent Self-Heating Degradation of Metal-Induced Laterally Crystallized n-Type Polycrystalline Silicon Thin-Film Transistors. IEEE Transactions on Electron Devices, 2007, 54, 3276-3284.	3.0	29
52	Effective Channel Mobility of Poly-Silicon Thin Film Transistors. , 2006, , .		5
53	Characterization of an individual grain boundary in metal-induced laterally crystallized polycrystalline silicon thin-film devices. IEEE Transactions on Electron Devices, 2001, 48, 1655-1660.	3.0	28
54	Pâ€2: Reâ€Crystallized Metalâ€Induced Laterally Crystallized Polycrystalline Silicon for Systemâ€onâ€Panel Applications. Digest of Technical Papers SID International Symposium, 2000, 31, 531-533.	0.3	0

MINGXIANG WANG

#	Article	IF	CITATIONS
55	High performance low temperature metal-induced unilaterally crystallized polycrystalline silicon thin film transistors for system-on-panel applications. IEEE Transactions on Electron Devices, 2000, 47, 404-409.	3.0	163
56	The effects of high temperature annealing on metal-induced laterally crystallized polycrystalline silicon. IEEE Transactions on Electron Devices, 2000, 47, 2061-2067.	3.0	42
57	Anisotropic conduction behavior in metal-induced laterally crystallized polycrystalline silicon thin films. Applied Physics Letters, 2000, 76, 448-450.	3.3	15
58	Degradation and its Fast Recovery in a-IGZO Thin-Film Transistors under Negative Gate Bias Stress. Chinese Physics B, 0, , .	1.4	0