João F Gomes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5308988/publications.pdf

Version: 2024-02-01

		304743	315739
50	1,571	22	38
papers	citations	h-index	g-index
50	50	50	1647
50	50	50	1647
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Immobilization of TiO2 onto a polymeric support for photocatalytic oxidation of a paraben's mixture. Journal of Water Process Engineering, 2022, 46, 102458.	5.6	6
2	Solar energy for liquid wastewater treatment with novel TiO2 supported catalysts. Energy Reports, 2022, 8, 489-494.	5.1	6
3	lon Exchange to Capture Iron after Real Effluent Treatment by Fenton's Process. Water (Switzerland), 2022, 14, 706.	2.7	4
4	An Overview of Polymer-Supported Catalysts for Wastewater Treatment through Light-Driven Processes. Water (Switzerland), 2022, 14, 825.	2.7	8
5	Evaluation of the Activation Procedure on Oxone Efficiency for Synthetic Olive Mill Wastewater Treatment. Catalysts, 2022, 12, 291.	3.5	6
6	Ozone Kinetic Studies Assessment for the PPCPs Abatement: Mixtures Relevance. ChemEngineering, 2022, 6, 20.	2.4	4
7	Sulfate radical based advanced oxidation processes for agro-industrial effluents treatment: A comparative review with Fenton's peroxidation. Science of the Total Environment, 2022, 832, 155029.	8.0	35
8	Nanostructured photocatalysts for the abatement of contaminants by photocatalysis and photocatalytic ozonation: An overview. Science of the Total Environment, 2022, 837, 155776.	8.0	28
9	Ecotoxicological Consequences of the Abatement of Contaminants of Emerging Concern by Ozonationâ€"Does Mixture Complexity Matter?. Water (Switzerland), 2022, 14, 1801.	2.7	2
10	Scale-up impact over solar photocatalytic ozonation with benchmark-P25 and N-TiO2 for insecticides abatement in water. Journal of Environmental Chemical Engineering, 2021, 9, 104915.	6.7	12
11	Olive oil extraction industry wastewater treatment by coagulation and Fenton's process. Journal of Water Process Engineering, 2021, 39, 101818.	5.6	28
12	Paraben Compoundsâ€"Part I: An Overview of Their Characteristics, Detection, and Impacts. Applied Sciences (Switzerland), 2021, 11, 2307.	2.5	52
13	Paraben Compoundsâ€"Part II: An Overview of Advanced Oxidation Processes for Their Degradation. Applied Sciences (Switzerland), 2021, 11, 3556.	2.5	8
14	Swine wastewater treatment by Fenton's process and integrated methodologies involving coagulation and biofiltration. Journal of Cleaner Production, 2021, 293, 126105.	9.3	18
15	Advanced oxidation processes perspective regarding swine wastewater treatment. Science of the Total Environment, 2021, 776, 145958.	8.0	52
16	TiO2 nanotube catalysts for parabens mixture degradation by photocatalysis and ozone-based technologies. Chemical Engineering Research and Design, 2021, 152, 601-613.	5.6	25
17	Coagulation and biofiltration by Corbicula fluminea for COD and toxicity reduction of swine wastewater. Journal of Water Process Engineering, 2021, 42, 102145.	5.6	7
18	Supported TiO2 in Ceramic Materials for the Photocatalytic Degradation of Contaminants of Emerging Concern in Liquid Effluents: A Review. Molecules, 2021, 26, 5363.	3.8	19

#	Article	IF	Citations
19	Photocatalytic oxidation of pharmaceutical contaminants of emerging concern using sunlight and visible radiation: Mechanism and ecotoxicological evaluation. Journal of Water Process Engineering, 2021, 43, 102204.	5.6	6
20	Persulfate Process Activated by Homogeneous and Heterogeneous Catalysts for Synthetic Olive Mill Wastewater Treatment. Water (Switzerland), 2021, 13, 3010.	2.7	12
21	Iron-based catalysts under solar and visible radiation for contaminants of emerging concern removal. Energy Reports, 2020, 6, 711-716.	5.1	5
22	Advanced oxidation processes for recalcitrant compounds removal comparison with biofiltration by Corbicula fluminea. Energy Reports, 2020, 6, 666-671.	5.1	11
23	N-doped titanium dioxide for mixture of parabens degradation based on ozone action and toxicity evaluation: Precursor of nitrogen and titanium effect. Chemical Engineering Research and Design, 2020, 138, 80-89.	5.6	16
24	Unexpected effect of ozone on the paraben's mixture degradation using TiO2 supported nanotubes. Science of the Total Environment, 2020, 743, 140831.	8.0	13
25	Photocatalytic ozonation of parabens mixture using 10% N-TiO2 and the effect of water matrix. Science of the Total Environment, 2020, 718, 137321.	8.0	33
26	Solar Photocatalytic Degradation of Sulfamethoxazole by TiO2 Modified with Noble Metals. Catalysts, 2019, 9, 500.	3.5	31
27	TiO2 nanotube arrays-based reactor for photocatalytic oxidation of parabens mixtures in ultrapure water: Effects of photocatalyst properties, operational parameters and light source. Science of the Total Environment, 2019, 689, 79-89.	8.0	27
28	Removal of Enteric Pathogens from Real Wastewater Using Single and Catalytic Ozonation. Water (Switzerland), 2019, 11, 127.	2.7	19
29	Catalytic Efficiency of Red Mud for the Degradation of Olive Mill Wastewater through Heterogeneous Fenton's Process. Water (Switzerland), 2019, 11, 1183.	2.7	22
30	Effect of Different Radiation Sources and Noble Metal Doped onto TiO2 for Contaminants of Emerging Concern Removal. Water (Switzerland), 2019, 11, 894.	2.7	9
31	N–TiO2 Photocatalysts: A Review of Their Characteristics and Capacity for Emerging Contaminants Removal. Water (Switzerland), 2019, 11, 373.	2.7	112
32	Comparison of radical-driven technologies applied for paraben mixture degradation: mechanism, biodegradability, toxicity and cost assessment. Environmental Science and Pollution Research, 2019, 26, 37174-37192.	5.3	20
33	Study of the influence of the matrix characteristics over the photocatalytic ozonation of parabens using Ag-TiO2. Science of the Total Environment, 2019, 646, 1468-1477.	8.0	46
34	Ecotoxicity variation through parabens degradation by single and catalytic ozonation using volcanic rock. Chemical Engineering Journal, 2019, 360, 30-37.	12.7	30
35	Ozone and Photocatalytic Processes for Pathogens Removal from Water: A Review. Catalysts, 2019, 9, 46.	3.5	61
36	Paraben degradation using catalytic ozonation over volcanic rocks. Environmental Science and Pollution Research, 2018, 25, 7346-7357.	5. 3	27

#	Article	IF	Citations
37	Environmentally applications of invasive bivalves for water and wastewater decontamination. Science of the Total Environment, 2018, 630, 1016-1027.	8.0	24
38	Winery wastewater treatment by integrating Fenton's process with biofiltration by <scp><i>Corbicula fluminea</i></scp> . Journal of Chemical Technology and Biotechnology, 2018, 93, 333-339.	3.2	25
39	Detoxification of Olive Mill Wastewaters by Fenton's Process. Catalysts, 2018, 8, 662.	3.5	36
40	Effect of Noble Metals (Ag, Pd, Pt) Loading over the Efficiency of TiO2 during Photocatalytic Ozonation on the Toxicity of Parabens. ChemEngineering, 2018, 2, 4.	2.4	34
41	Biofiltration using C.Âfluminea for E.coli removal from water: Comparison with ozonation and photocatalytic oxidation. Chemosphere, 2018, 208, 674-681.	8.2	18
42	Application of ozonation for pharmaceuticals and personal care products removal from water. Science of the Total Environment, 2017, 586, 265-283.	8.0	321
43	Detoxification of parabens using UV-A enhanced by noble metals—TiO2 supported catalysts. Journal of Environmental Chemical Engineering, 2017, 5, 3065-3074.	6.7	52
44	Noble metal–TiO2 supported catalysts for the catalytic ozonation of parabens mixtures. Chemical Engineering Research and Design, 2017, 111, 148-159.	5 . 6	39
45	Photocatalytic ozonation using doped TiO2 catalysts for the removal of parabens in water. Science of the Total Environment, 2017, 609, 329-340.	8.0	78
46	Environmental preservation of emerging parabens contamination: effect of Ag and Pt loading over the catalytic efficiency of TiO 2 during photocatalytic ozonation. Energy Procedia, 2017, 136, 270-276.	1.8	10
47	Sensitivity of the invasive bivalve Corbicula fluminea to candidate control chemicals: The role of dissolved oxygen conditions. Science of the Total Environment, 2015, 536, 825-830.	8.0	14
48	Dispersal of <i>Corbicula fluminea </i> : factors influencing the invasive clam's drifting behavior. Annales De Limnologie, 2014, 50, 37-47.	0.6	20
49	Evaluation of candidate biocides to control the biofouling Asian clam in the drinking water treatment industry: An environmentally friendly approach. Journal of Great Lakes Research, 2014, 40, 421-428.	1.9	23
50	The Asian clam Corbicula fluminea in the European freshwater-dependent industry: A latent threat or a friendly enemy?. Ecological Economics, 2011, 70, 1805-1813.	5.7	57