Roberto Salguero-Gomez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5308195/publications.pdf

Version: 2024-02-01

109 papers 8,731 citations

35 h-index 85 g-index

147 all docs

147 docs citations

times ranked

147

13583 citing authors

#	Article	IF	CITATIONS
1	Connecting people and ideas from around the world: global innovation platforms for nextâ€generation ecology and beyond. Ecosphere, 2015, 6, 1-11.	2.2	1,488
2	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
3	Diversity of ageing across the tree of life. Nature, 2014, 505, 169-173.	27.8	800
4	Functional traits explain variation in plant life history strategies. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 740-745.	7.1	473
5	Fast–slow continuum and reproductive strategies structure plant life-history variation worldwide. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 230-235.	7.1	290
6	The <scp>compadre</scp> <scp>P</scp> lant <scp>M</scp> atrix <scp>D</scp> atabase: an open online repository for plant demography. Journal of Ecology, 2015, 103, 202-218.	4.0	260
7	It is getting hotter in here: determining and projecting the impacts of global environmental change on drylands. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 3062-3075.	4.0	243
8	Advancing population ecology with integral projection models: a practical guide. Methods in Ecology and Evolution, 2014, 5, 99-110.	5.2	231
9	<scp>COMADRE</scp> : a global data base of animal demography. Journal of Animal Ecology, 2016, 85, 371-384.	2.8	189
10	Animal life history is shaped by the pace of life and the distribution of age-specific mortality and reproduction. Nature Ecology and Evolution, 2019, 3, 1217-1224.	7.8	168
11	Anagenetic evolution in island plants. Journal of Biogeography, 2006, 33, 1259-1265.	3.0	165
12	Towards global data products of Essential Biodiversity Variables on species traits. Nature Ecology and Evolution, 2018, 2, 1531-1540.	7.8	163
13	Forecasting species range dynamics with processâ€explicit models: matching methods to applications. Ecology Letters, 2019, 22, 1940-1956.	6.4	144
14	Open Science principles for accelerating trait-based science across the Tree of Life. Nature Ecology and Evolution, 2020, 4, 294-303.	7.8	144
15	Data gaps and opportunities for comparative and conservation biology. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9658-9664.	7.1	115
16	Erosion of global functional diversity across the tree of life. Science Advances, 2021, 7, .	10.3	114
17	Global gene flow releases invasive plants from environmental constraints on genetic diversity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4218-4227.	7.1	108
18	A demographic approach to study effects of climate change in desert plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 3100-3114.	4.0	104

#	Article	IF	CITATIONS
19	Keeping plant shrinkage in the demographic loop. Journal of Ecology, 2010, 98, 312-323.	4.0	95
20	Age, stage and senescence in plants. Journal of Ecology, 2013, 101, 585-595.	4.0	95
21	The pace and shape of senescence in angiosperms. Journal of Ecology, 2013, 101, 596-606.	4.0	94
22	<i><scp>IPM</scp>pack</i> : an <scp>R</scp> package for integral projection models. Methods in Ecology and Evolution, 2013, 4, 195-200.	5.2	93
23	Less favourable climates constrain demographic strategies in plants. Ecology Letters, 2017, 20, 969-980.	6.4	83
24	Applications of the fast–slow continuum and reproductive strategy framework of plant life histories. New Phytologist, 2017, 213, 1618-1624.	7.3	82
25	Matrix Dimensions Bias Demographic Inferences: Implications for Comparative Plant Demography. American Naturalist, 2010, 176, 710-722.	2.1	76
26	Delivering the promises of traitâ€based approaches to the needs of demographic approaches, and <i>vice versa</i> . Functional Ecology, 2018, 32, 1424-1435.	3.6	74
27	Towards a Comparative Framework of Demographic Resilience. Trends in Ecology and Evolution, 2020, 35, 776-786.	8.7	73
28	Interactive lifeâ€history traits predict sensitivity of plants and animals to temporal autocorrelation. Ecology Letters, 2018, 21, 275-286.	6.4	71
29	Predicting invasion in grassland ecosystems: is exotic dominance the real embarrassment of richness?. Global Change Biology, 2013, 19, 3677-3687.	9.5	70
30	High dispersal ability is related to fast lifeâ€history strategies. Journal of Ecology, 2018, 106, 1349-1362.	4.0	70
31	Matrix projection models meet variation in the real world. Journal of Ecology, 2010, 98, 250-254.	4.0	64
32	Multidimensional ecological analyses demonstrate how interactions between functional traits shape fitness and life history strategies. Journal of Ecology, 2019, 107, 2317-2328.	4.0	58
33	The Disposable Soma Theory. , 2017, , 23-39.		57
34	Plants do not count… or do they? New perspectives on the universality of senescence. Journal of Ecology, 2013, 101, 545-554.	4.0	50
35	Demography beyond the population. Journal of Ecology, 2016, 104, 271-280.	4.0	49
36	Linking transient dynamics and life history to biological invasion success. Journal of Ecology, 2016, 104, 399-408.	4.0	46

#	Article	IF	CITATIONS
37	Senescence, Selection Gradients and Mortality. , 2017, , 56-82.		43
38	Herbaceous perennial plants with short generation time have stronger responses to climate anomalies than those with longer generation time. Nature Communications, 2021, 12, 1824.	12.8	41
39	Longevity, body dimension and reproductive mode drive differences in aquatic versus terrestrial lifeâ€history strategies. Functional Ecology, 2020, 34, 1613-1625.	3.6	38
40	Prioritizing management actions for invasive populations using cost, efficacy, demography and expert opinion for 14 plant species worldâ€wide. Journal of Applied Ecology, 2016, 53, 305-316.	4.0	33
41	Warming impacts on early life stages increase the vulnerability and delay the population recovery of a longâ€lived habitatâ€forming macroalga. Journal of Ecology, 2019, 107, 1129-1140.	4.0	33
42	Statistical modelling of annual variation for inference on stochastic population dynamics using Integral Projection Models. Methods in Ecology and Evolution, 2015, 6, 1007-1017.	5.2	31
43	Demographic Senescence in Herbaceous Plants. , 2017, , 303-319.		31
44	Senescence: why and where selection gradients might not decline with age. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210851.	2.6	31
45	A hydraulic explanation for sizeâ€specific plant shrinkage: developmental hydraulic sectoriality. New Phytologist, 2011, 189, 229-240.	7.3	30
46	Physiological and Biochemical Processes Related to Ageing and Senescence in Plants., 2017,, 257-283.		30
47	The myriad of complex demographic responses of terrestrial mammals to climate change and gaps of knowledge: A global analysis. Journal of Animal Ecology, 2021, 90, 1398-1407.	2.8	30
48	Lack of quantitative training among early-career ecologists: a survey of the problem and potential solutions. Peerl, 2014, 2, e285.	2.0	30
49	Extrapolating demography with climate, proximity and phylogeny: approach with caution. Ecology Letters, 2016, 19, 1429-1438.	6.4	29
50	Ecoâ€evolutionary dynamics in plants: interactive processes at overlapping timeâ€scales and their implications. Journal of Ecology, 2015, 103, 789-797.	4.0	25
51	Accounting for uncertainty in dormant life stages in stochastic demographic models. Oikos, 2017, 126, 900-909.	2.7	25
52	Lagged and dormant season climate better predict plant vital rates than climate during the growing season. Global Change Biology, 2021, 27, 1927-1941.	9.5	24
53	Co-existence of multiple trade-off currencies shapes evolutionary outcomes. PLoS ONE, 2017, 12, e0189124.	2.5	23
54	Demographic amplification is a predictor of invasiveness among plants. Nature Communications, 2019, 10, 5602.	12.8	23

#	Article	IF	Citations
55	Demographic performance of European tree species at their hot and cold climatic edges. Journal of Ecology, 2021, 109, 1041-1054.	4.0	23
56	The projected degradation of subtropical coral assemblages by recurrent thermal stress. Journal of Animal Ecology, 2021, 90, 233-247.	2.8	23
57	Introducing short roots in a desert perennial: anatomy and spatiotemporal foraging responses to increased precipitation. New Phytologist, 2011, 191, 173-183.	7.3	21
58	The next generation of <i>action ecology</i> : novel approaches towards global ecological research. Ecosphere, 2015, 6, 1-16.	2.2	21
59	Introduction: Wilting Leaves and Rotting Branches. , 2017, , 1-20.		21
60	Implications of clonality for ageing research. Evolutionary Ecology, 2018, 32, 9-28.	1.2	21
61	Phenotypic plasticity masks rangeâ€wide genetic differentiation for vegetative but not reproductive traits in a shortâ€lived plant. Ecology Letters, 2021, 24, 2378-2393.	6.4	21
62	The Evolution of Senescence in Annual Plants. , 2017, , 284-302.		20
63	Reconciling resilience across ecological systems, species and subdisciplines. Journal of Ecology, 2021, 109, 3102-3113.	4.0	20
64	Life history mediates the tradeâ€offs among different components of demographic resilience. Ecology Letters, 2022, 25, 1566-1579.	6.4	20
65	Testing Finch's hypothesis: The role of organismal modularity on the escape from actuarial senescence. Functional Ecology, 2020, 34, 88-106.	3.6	19
66	Climatic and evolutionary contexts are required to infer plant life history strategies from functional traits at a global scale. Ecology Letters, 2021, 24, 970-983.	6.4	19
67	Whiteâ€tailed deer (<i>Odocoileus virginianus</i>) positively affect the growth of mature northern red oak (<i>Quercus rubra</i>) trees. Ecosphere, 2013, 4, 1-15.	2.2	18
68	Forest Fragmentation Alters the Population Dynamics of a Lateâ€successional Tropical Tree. Biotropica, 2014, 46, 556-564.	1.6	18
69	Interacting livestock and fire may both threaten and increase viability of a fireâ€adapted Mediterranean carnivorous plant. Journal of Applied Ecology, 2017, 54, 1884-1894.	4.0	18
70	Consequences of neglecting cryptic life stages from demographic models. Ecological Modelling, 2019, 408, 108723.	2.5	18
71	Bridging gaps in demographic analysis with phylogenetic imputation. Conservation Biology, 2021, 35, 1210-1221.	4.7	18
72	Local-scale disturbances can benefit an endangered, fire-adapted plant species in Western Mediterranean heathlands in the absence of fire. Biological Conservation, 2015, 187, 74-81.	4.1	17

#	Article	IF	Citations
7 3	A demographic ménage à trois: interactions between disturbances both amplify and dampen population dynamics of an endemic plant. Journal of Ecology, 2016, 104, 1778-1788.	4.0	17
74	Correction for Adler et al., Functional traits explain variation in plant life history strategies. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10019-10019.	7.1	16
7 5	Some Like It Hot: Are Desert Plants Indifferent to Climate Change?. Progress in Botany Fortschritte Der Botanik, 2014, , 377-400.	0.3	16
76	Next-gen plant clonal ecology. Perspectives in Plant Ecology, Evolution and Systematics, 2021, 49, 125601.	2.7	15
77	The limits of demographic buffering in coping with environmental variation. Oikos, 2021, 130, 1346-1358.	2.7	14
78	A cautionary note on elasticity analyses in a ternary plot using randomly generated population matrices. Population Ecology, 2018, 60, 37-47.	1.2	13
79	After "eco―comes "service― Frontiers in Ecology and the Environment, 2009, 7, 277-278.	4.0	11
80	Life History Trade-Offs Modulate the Speed of Senescence. , 0, , 403-421.		11
81	Four key challenges in the openâ€data revolution. Journal of Animal Ecology, 2021, 90, 2000-2004.	2.8	9
82	Validity of photo-oxidative stress markers and stress-related phytohormones as predictive proxies of mortality risk in the perennial herb Plantago lanceolata. Environmental and Experimental Botany, 2021, 191, 104598.	4.2	9
83	What Is the Minimal Optimal Sample Size for Plant Ecophysiological Studies?. Plant Physiology, 2018, 178, 953-955.	4.8	8
84	Comments to "Persistent problems in the construction of matrix population models― Ecological Modelling, 2020, 416, 108913.	2.5	8
85	Demographic analysis of an Israeli Carpobrotus population. PLoS ONE, 2021, 16, e0250879.	2.5	8
86	The next generation of peer reviewing. Frontiers in Ecology and the Environment, 2011, 9, 199-199.	4.0	7
87	Transient facilitation of resprouting shrubs in fire-prone habitats. Journal of Plant Ecology, 2018, 11, 475-483.	2.3	7
88	Ecological Society of America's Initiatives and Contributions During the Deepwater Horizon Oil Spill. Bulletin of the Ecological Society of America, 2012, 93, 115-116.	0.2	5
89	Senescence in Modular Animals. , 2017, , 220-237.		5
90	Transient demographic approaches can drastically expand the toolbox of coral reef science. Coral Reefs, 2022, 41, 885-896.	2.2	5

#	Article	IF	CITATIONS
91	Disentangling traitâ€based mortality in species with decoupled size and age. Journal of Animal Ecology, 2015, 84, 1446-1456.	2.8	4
92	Taxonomic Diversity, Complexity and the Evolution of Senescence., 2017,, 83-102.		4
93	Evolutionary Demography of the Human Mortality Profile. , 0, , 105-125.		4
94	Assessing the accuracy of densityâ€independent demographic models for predicting species ranges. Ecography, 2021, 44, 345-357.	4.5	4
95	Prototypical r-/K-Selected (Fast/Slow) Species. , 2019, , 1-4.		4
96	Rpadrino: An R package to access and use <scp>PADRINO</scp> , an open access database of Integral Projection Models. Methods in Ecology and Evolution, 2022, 13, 1923-1929.	5.2	4
97	No second chances: demography from the forest floor to the canopy and back again. Journal of Ecology, 2015, 103, 1498-1508.	4.0	3
98	Land use heterogeneity causes variation in demographic viability of a bioindicator of speciesâ€richness in protected fen grasslands. Population Ecology, 2016, 58, 165-178.	1.2	3
99	Fineâ€scale spatial variation in fitness is comparable to disturbanceâ€induced fluctuations in a fireâ€adapted species. Ecology, 2021, 102, e03287.	3.2	3
100	ipmr: Flexible implementation of Integral Projection Models in R. Methods in Ecology and Evolution, 2021, 12, 1826-1834.	5.2	3
101	Using a residency index to estimate the economic value of coastal habitat provisioning services for commercially important fish species. Conservation Science and Practice, 2021, 3, e363.	2.0	2
102	What are the demographic consequences of a seed bank stage for columnar cacti?. Population Ecology, 2022, 64, 35-46.	1.2	2
103	Integral projection models. , 2021, , 181-196.		2
104	Complex Life Histories and Senescence in Plants: Avenues to Escape Age-Related Decline?., 0,, 320-338.		0
105	A Hamiltonian Demography of Life History. , 0, , 40-55.		0
106	Organismal Senescence in Plant–Fungal Symbioses. , 0, , 381-400.		0
107	Prototypical r-/K-Selected (Fast/Slow) Species. , 2021, , 6346-6349.		0
108	Journal journeys: Building on our reputation in animal ecology with new ways to publish. Journal of Animal Ecology, 2021, 90, 2724-2725.	2.8	0

#	Article	IF	CITATIONS
109	Reply to: Senescence, trait parameterization and (st)age-specific forces of selection. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212610.	2.6	0