Thierry Ollevier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5307897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emerging Applications of Aryl Trifluoromethyl Diazoalkanes and Diazirines in Synthetic Transformations. ACS Organic & Inorganic Au, 2022, 2, 83-98.	1.9	18
2	<i>C</i> ₂ -Symmetric 2,2′-Bipyridine-α,α′-1-adamantyl-diol Ligand: Bulky Iron Complexes in Asymmetric Catalysis. Organic Letters, 2022, 24, 1116-1120.	2.4	4
3	Catalytic Bismuth(V)-Mediated Oxidation of Hydrazones into Diazo Compounds. Organic Letters, 2022, 24, 2675-2678.	2.4	8
4	Electrosynthesis of Stabilized Diazo Compounds from Hydrazones. Organic Letters, 2022, 24, 4665-4669.	2.4	11
5	Convenient synthesis of tricyclic N(1)–C(2)-fused oxazino-indolones <i>via</i> [Au(<scp>i</scp>)] catalyzed hydrocarboxylation of allenes. Chemical Communications, 2022, 58, 8698-8701.	2.2	4
6	The Power of Iron Catalysis in Diazo Chemistry. Synthesis, 2021, 53, 79-94.	1.2	17
7	2,2′-Bipyridine-α,α′-trifluoromethyl-diol ligand: synthesis and application in the asymmetric Et ₂ Zn alkylation of aldehydes. Chemical Communications, 2021, 57, 11025-11028.	2.2	8
8	Synthesis of homochiral sulfanyl- and sulfoxide-substituted naphthyltriazoles and study of the conformational stability. Organic and Biomolecular Chemistry, 2021, 19, 6521-6526.	1.5	5
9	Supporting-Electrolyte-Free Anodic Oxidation of Oxamic Acids into Isocyanates: An Expedient Way to Access Ureas, Carbamates, and Thiocarbamates. Organic Process Research and Development, 2021, 25, 2614-2621.	1.3	13
10	Photochemical Cyclopropenation of Alkynes with Diazirines as Carbene Precursors in Continuous Flow. Organic Letters, 2021, 23, 5420-5424.	2.4	14
11	Biochar as an Additive to Modify Biopitch Binder for Carbon Anodes. ACS Sustainable Chemistry and Engineering, 2021, 9, 12406-12414.	3.2	7
12	Fluoride-Triggered Synthesis of 1-Aryl-2,2-difluoroalkenes via Desilylative Defluorination of (1-Aryl)-2,2,2-trifluoroethyl-silanes. Journal of Organic Chemistry, 2021, 86, 13160-13168.	1.7	2
13	Efficient stereoselective synthesis of chiral 3,3′-dimethyl-(2,2′-bipyridine)-diol ligand and applications in Fe ^{II} -catalysis. Organic Chemistry Frontiers, 2021, 8, 2242-2249.	2.3	4
14	Anodic Oxidation of Aminotetrazoles: A Mild and Safe Route to Isocyanides. Organic Letters, 2021, 23, 9371-9375.	2.4	8
15	Mechanism studies of oxidation and hydrolysis of Cu(I)–NHC and Ag–NHC in solution under air. Journal of Organometallic Chemistry, 2020, 906, 121025.	0.8	17
16	Properties of Bio-pitch and Its Wettability on Coke. ACS Sustainable Chemistry and Engineering, 2020, 8, 15366-15374.	3.2	9
17	Synthesis and Characterization of Bio-pitch from Bio-oil. ACS Sustainable Chemistry and Engineering, 2020, 8, 11772-11782.	3.2	14
18	Bridging Lab and Industry with Flow Electrochemistry. IScience, 2020, 23, 101720.	1.9	89

#	Article	IF	CITATIONS
19	Recyclable iron(<scp>ii</scp>) caffeine-derived ionic salt catalyst in the Diels–Alder reaction of cyclopentadiene and î±,β-unsaturated <i>N</i> -acyl-oxazolidinones in dimethyl carbonate. RSC Advances, 2019, 9, 21956-21963.	1.7	12
20	Hydrogen-Bond-Promoted Metal-Free Hydroamination of Alkynes. Synlett, 2019, 30, 2086-2090.	1.0	3
21	Asymmetric Cu ^I -Catalyzed Insertion Reaction of 1-Aryl-2,2,2-trifluoro-1-diazoethanes into Si–H Bonds. Organic Letters, 2019, 21, 9094-9098.	2.4	20
22	Synthesis of Imidazolidinone, Imidazolone, and Benzimidazolone Derivatives through Oxidation Using Copper and Air. Organic Letters, 2019, 21, 3572-3575.	2.4	22
23	Transition-Metal-Free α-Vinylation of Enolizable Ketones with β-Bromostyrenes. Organic Letters, 2019, 21, 1564-1568.	2.4	9
24	α-Thiocarbonyl synthesis <i>via</i> the Fe ^{II} -catalyzed insertion reaction of α-diazocarbonyls into S–H bonds. Organic and Biomolecular Chemistry, 2019, 17, 3098-3102.	1.5	34
25	Fe ^{II} -catalysed insertion reaction of α-diazocarbonyls into X–H bonds (X = Si, S, N, and O) in dimethyl carbonate as a suitable solvent alternative. RSC Advances, 2019, 9, 31241-31246.	1.7	30
26	Iron―or Zincâ€Mediated Synthetic Approach to Enantiopure Dihydroquinoxalinones. European Journal of Organic Chemistry, 2019, 2019, 1273-1280.	1.2	12
27	Asymmetric Diels–Alder Reaction of α,β-Unsaturated Oxazolidin-2-one Derivatives Catalyzed by a Chiral Fe(III)-Bipyridine Diol Complex. Organic Letters, 2018, 20, 995-998.	2.4	31
28	Iron-Modified Mesoporous Silica as an Efficient Solid Lewis Acid Catalyst for the Mukaiyama Aldol Reaction. ACS Catalysis, 2018, 8, 1932-1944.	5.5	40
29	Fe(BF4)2-Catalyzed Inter- and Intramolecular Carbonyl-Ene Reaction of Trifluoropyruvate. Synlett, 2018, 29, 640-644.	1.0	4
30	Transitionâ€Metalâ€Free Synthesis of Biarylmethanes from Aryl Iodides and Benzylic Ketones. Chemistry - A European Journal, 2018, 24, 17449-17453.	1.7	7
31	Fe(OTf) ₂ â€Catalyzed <i>Thia</i> â€Michael Addition Reaction: A Green Synthetic Approach to βâ€Thioethers. European Journal of Organic Chemistry, 2018, 2018, 4536-4540.	1.2	15
32	Atom economical synthesis of N-alkylbenzamides via the iron(<scp>iii</scp>) sulfate catalyzed rearrangement of 2-alkyl-3-aryloxaziridines in water and in the presence of a surfactant. Green Chemistry, 2017, 19, 1263-1267.	4.6	25
33	Copper-Catalyzed Carbenoid Insertion Reactions of α-Diazoesters and α-Diazoketones into Si–H and S–H Bonds. Journal of Organic Chemistry, 2017, 82, 3000-3010.	1.7	81
34	Recent progress in the catalytic carbene insertion reactions into the silicon–hydrogen bond. Organic and Biomolecular Chemistry, 2017, 15, 5441-5456.	1.5	88
35	Enantioselective Aromatic Sulfide Oxidation and Tandem Kinetic Resolution Using Aqueous H ₂ O ₂ and Chiral Iron–Bis(oxazolinyl)bipyridine Catalysts. European Journal of Organic Chemistry, 2017, 2017, 1628-1637.	1.2	14
36	Iron-Catalyzed Carbene Insertion Reactions of α-Diazoesters into Si–H Bonds. Organic Letters, 2017, 19, 5736-5739.	2.4	70

#	Article	IF	CITATIONS
37	Asymmetric Fe ^{II} -Catalyzed Thia-Michael Addition Reaction to α,β-Unsaturated Oxazolidin-2-one Derivatives. Organic Letters, 2017, 19, 6324-6327.	2.4	27
38	Hydrogen peroxide/dimethyl carbonate: a green system for epoxidation of N-alkylimines and N-sulfonylimines. One-pot synthesis of N-alkyloxaziridines from N-alkylamines and (hetero)aromatic aldehydes. Green Chemistry, 2016, 18, 4859-4864.	4.6	22
39	CsF/clinoptilolite: an efficient solid base in S _N Ar and copper-catalyzed Ullmann reactions. Canadian Journal of Chemistry, 2016, 94, 95-104.	0.6	16
40	Iron bis(oxazoline) complexes in asymmetric catalysis. Catalysis Science and Technology, 2016, 6, 41-48.	2.1	51
41	Enantioselective Iron Catalysts. Topics in Organometallic Chemistry, 2015, , 259-309.	0.7	23
42	Transitionâ€Metalâ€Free αâ€Arylation of Enolizable Aryl Ketones and Mechanistic Evidence for a Radical Process. Angewandte Chemie - International Edition, 2015, 54, 10587-10591.	7.2	129
43	New chiral bis(oxazolinyl)bipyridine ligands and application in the iron catalyzed asymmetric hydrosilylation of ketones. French-Ukrainian Journal of Chemistry, 2015, 3, 44-53.	0.1	4
44	Ultrasound-Promoted Knoevenagel Condensation Catalyzed by KF-Clinoptilolite. Letters in Organic Chemistry, 2015, 12, 645-650.	0.2	15
45	On the Frontier Between Nucleophilic Aromatic Substitution and Catalysis. Chemistry - A European Journal, 2014, 20, 5231-5236.	1.7	25
46	Iron(II)â€Derived Lewis Acid/Surfactant Combined Catalysis for the Enantioselective Mukaiyama Aldol Reaction in Pure Water. ChemCatChem, 2014, 6, 2244-2247.	1.8	23
47	Highly enantioselective iron(ii)-catalyzed opening reaction of aromatic meso-epoxides with indoles. Organic and Biomolecular Chemistry, 2013, 11, 7463.	1.5	37
48	Gallium(III) Triflate Catalyzed Diastereoselective Mukaiyama Aldol Reaction by Using Low Catalyst Loadings. European Journal of Organic Chemistry, 2013, 2013, 6525-6529.	1.2	5
49	Iron―and Bismuth atalyzed Asymmetric Mukaiyama Aldol Reactions in Aqueous Media. Chemistry - an Asian Journal, 2013, 8, 3051-3062.	1.7	45
50	New trends in bismuth-catalyzed synthetic transformations. Organic and Biomolecular Chemistry, 2013, 11, 2740.	1.5	194
51	Iron(II)-catalyzed enantioselective meso-epoxide-opening with anilines. Chemical Communications, 2012, 48, 3806.	2.2	60
52	Iron-Catalyzed Enantioselective Reactions Through the Use of Chiral Bipyridine-Containing Ligands. Australian Journal of Chemistry, 2012, 65, 1564.	0.5	10
53	Highly enantioselective Mukaiyama aldol reaction in aqueous conditions using a chiral iron(<scp>ii</scp>) bipyridine catalyst. Chemical Communications, 2012, 48, 2289-2291.	2.2	53
54	Bismuth Triflateâ€Catalyzed Asymmetric Allylation of Aromatic Aldehydes. Chemistry - A European Journal, 2012, 18, 3144-3147.	1.7	47

#	Article	IF	CITATIONS
55	Inside Cover: Bismuth Triflate-Catalyzed Asymmetric Allylation of Aromatic Aldehydes (Chem. Eur. J.) Tj ETQq1 1).784314 1.7	rg&T /Overlo
56	Phenolic compounds that confer resistance to spruce budworm. Entomologia Experimentalis Et Applicata, 2011, 141, 35-44.	0.7	57
57	Bismuth-Catalyzed Addition of Silyl Nucleophiles to Carbonyl Compounds and Imines. Topics in Current Chemistry, 2011, 311, 69-114.	4.0	5
58	Bismuth Triflateâ€Catalyzed Addition of Allylsilanes to <i>N</i> â€Alkoxycarbonylamino Sulfones: Convenient Access to 3â€Cbzâ€Protected Cyclohexenylamines. Advanced Synthesis and Catalysis, 2009, 351, 3251-3259.	2.1	37
59	Bismuth triflate-catalyzed rearrangement of acetates of the Baylis–Hillman adducts into (E)-trisubstituted alkenes. Tetrahedron, 2008, 64, 5150-5155.	1.0	15
60	Microwave-enhanced bismuth triflate-catalyzed epoxide opening with aliphatic amines. Tetrahedron Letters, 2008, 49, 1546-1550.	0.7	37
61	Diastereoselective bismuth triflate catalyzed Claisen rearrangement of 2-alkoxycarbonyl-substituted allyl vinyl ethers. Canadian Journal of Chemistry, 2008, 86, 209-212.	0.6	15
62	Diastereoselective Mukaiyama Aldol Reaction of 2-(Trimethylsilyloxy)furan Catalyzed by Bismuth Triflate. Journal of Organic Chemistry, 2008, 73, 331-334.	1.7	57
63	An efficient and mild bismuth triflate-catalysed three-component Mannich-type reaction. Organic and Biomolecular Chemistry, 2007, 5, 3126.	1.5	63
64	Bismuth Triflate Catalyzed Allylation of Aldehydes with Allylstannane under Microwave Assistance. European Journal of Organic Chemistry, 2007, 2007, 5665-5668.	1.2	28
65	(RS,RS)-5-[Hydroxy(4-methylphenyl)methyl]furan-2(5H)-one. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o4298-o4298.	0.2	0
66	Recent advances in bismuth mediated aldol and Mannich reactions. Arkivoc, 2007, 2007, 10-20.	0.3	1
67	The first catalytic Sakurai reaction of N-alkoxycarbonylamino sulfones with allyltrimethylsilane. Organic and Biomolecular Chemistry, 2006, 4, 4440.	1.5	38
68	Bismuth triflate catalyzed Claisen rearrangement of allyl naphthyl ethers. Tetrahedron Letters, 2006, 47, 4051-4055.	0.7	50
69	Direct-type catalytic three-component Mannich reaction in aqueous media. Tetrahedron Letters, 2006, 47, 8351-8354.	0.7	84
70	Efficient and practical catalytic vinylogous aldol reaction of dioxinone-derived silyl dienol ethers with aromatic aldehydes. Tetrahedron Letters, 2006, 47, 9089-9092.	0.7	24
71	The First Catalytic Mannich-Type Reaction ofN-Alkoxycarbonylamino Sulfones with Silyl Enolates. Advanced Synthesis and Catalysis, 2006, 348, 2080-2084.	2.1	39
72	Synthesis of β-Amino Esters by Bismuth Triflate Catalyzed Three-Component Mannich-Type Reaction. Synlett, 2006, 2006, 219-222.	1.0	32

#	Article	IF	CITATIONS
73	Bismuth Triflate Catalyzed [1,3] Rearrangement of Aryl 3-Methylbut-2-enyl Ethers. Synthesis, 2006, 2006, 3963-3966.	1.2	27
74	Bismuth Triflate Catalyzed Mukaiyama Aldol Reaction in an Ionic Liquid. European Journal of Organic Chemistry, 2005, 2005, 4971-4973.	1.2	32
75	Bismuth Triflate Catalyzed Fries Rearrangement of Aryl Acetates ChemInform, 2005, 36, no.	0.1	0
76	Bismuth Triflate Catalyzed Three-Component Mannich-Type Reaction ChemInform, 2005, 36, no.	0.1	0
77	Bismuth Triflate-Catalyzed Fries Rearrangement of Aryl Acetates. Synlett, 2004, 2004, 2794-2796.	1.0	37
78	Highly Efficient Three-Component Synthesis of Protected Homoallylic Amines by Bismuth Triflate-Catalyzed Allylation of Aldimines ChemInform, 2004, 35, no.	0.1	0
79	Bismuth Triflate-Catalyzed Mild and Efficient Epoxide Opening by Aromatic Amines under Aqueous Conditions ChemInform, 2004, 35, no.	0.1	0
80	Bismuth triflate-catalyzed mild and efficient epoxide opening by aromatic amines under aqueous conditions. Tetrahedron Letters, 2004, 45, 49-52.	0.7	152
81	Bismuth Triflate-Catalyzed Three-Component Mannich-Type Reaction. Journal of Organic Chemistry, 2004, 69, 9292-9295.	1.7	139
82	An Efficient Method for the Ring Opening of Epoxides with Aromatic Amines Catalyzed by Bismuth Trichloride ChemInform, 2003, 34, no.	0.1	0
83	Synthesis of α-Nitro-α-diazocarbonyl Derivatives and Their Applications in the Cyclopropanation of Alkenes and in O—H Insertion Reactions ChemInform, 2003, 34, no.	0.1	0
84	Highly efficient three-component synthesis of protected homoallylic amines by bismuth triflate-catalyzed allylation of aldimines. Tetrahedron Letters, 2003, 44, 9003-9005.	0.7	76
85	Synthesis of -Nitrodiazocarbonyl Derivatives and Their Applications in the Cyclopropanation of Alkenes and in OH Insertion Reactions. Helvetica Chimica Acta, 2002, 85, 4468-4484.	1.0	65
86	An efficient method for the ring opening of epoxides with aromatic amines catalyzed by bismuth trichloride. Tetrahedron Letters, 2002, 43, 7891-7893.	0.7	129
87	Trifluoromethanesulfonyl Azide: A Powerful Reagent for the Preparation of α-Nitro-α-diazocarbonyl Derivatives. Journal of Organic Chemistry, 2000, 65, 9252-9254.	1.7	55
88	Synthesis and Absolute Structure Determination of Camphanoate Derivatives of Five Bicyclo[3.1.0]hexane Compounds. Acta Crystallographica Section C: Crystal Structure Communications, 1998, 54, 392-398.	0.4	4
89	Preparation and Synthetic Utility of 2-Methylselenomethyl Allyl Methyl Selenide. A Valuable Precursor to 2-Silylmethylallyllithiums. Synlett, 1998, 1998, 1219-1222.	1.0	6
90	Novel Synthesis of Vinylcyclopropyl Ketones and Vinylcyclopropanecarboxylic Acids:Â Application to the Stereoselective Synthesis oftrans-Chrysanthemic Acid. Journal of Organic Chemistry, 1997, 62, 1886-1890.	1.7	5