Hossein Najmabadi List of Publications by Year in descending order Source: https://exaly.com/author-pdf/5307891/publications.pdf Version: 2024-02-01 265 papers 9,847 citations 43973 48 h-index 85 g-index 276 all docs 276 docs citations times ranked 276 14351 citing authors | # | Article | IF | CITATIONS | |----|--|------|-----------| | 1 | Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature, 2011, 478, 57-63. | 13.7 | 805 | | 2 | LRP6 Mutation in a Family with Early Coronary Disease and Metabolic Risk Factors. Science, 2007, 315, 1278-1282. | 6.0 | 567 | | 3 | Biallelic mutations in the death domain of PIDD1 impair caspase-2 activation and are associated with intellectual disability. Translational Psychiatry, $2021, 11, 1$. | 2.4 | 334 | | 4 | Epigenetically Deregulated microRNA-375 Is Involved in a Positive Feedback Loop with Estrogen Receptor \hat{l}_{\pm} in Breast Cancer Cells. Cancer Research, 2010, 70, 9175-9184. | 0.4 | 260 | | 5 | Mutations in NSUN2 Cause Autosomal-Recessive Intellectual Disability. American Journal of Human Genetics, 2012, 90, 847-855. | 2.6 | 243 | | 6 | Human Male Infertility Caused by Mutations in the CATSPER1 Channel Protein. American Journal of Human Genetics, 2009, 84, 505-510. | 2.6 | 206 | | 7 | Thalassemia in Iran. Journal of Pediatric Hematology/Oncology, 2007, 29, 233-238. | 0.3 | 181 | | 8 | A Forward Genetics Screen in Mice Identifies Recessive Deafness Traits and Reveals That Pejvakin Is Essential for Outer Hair Cell Function. Journal of Neuroscience, 2007, 27, 2163-2175. | 1.7 | 159 | | 9 | Hexosamine Biosynthetic Pathway Mutations Cause Neuromuscular Transmission Defect. American Journal of Human Genetics, 2011, 88, 162-172. | 2.6 | 153 | | 10 | Genetic male infertility and mutation of CATSPER ion channels. European Journal of Human Genetics, 2010, 18, 1178-1184. | 1.4 | 139 | | 11 | A Defect in the Ionotropic Glutamate Receptor 6 Gene (GRIK2) Is Associated with Autosomal Recessive
Mental Retardation. American Journal of Human Genetics, 2007, 81, 792-798. | 2.6 | 137 | | 12 | Utilizing Ethnic-Specific Differences in Minor Allele Frequency to Recategorize Reported Pathogenic Deafness Variants. American Journal of Human Genetics, 2014, 95, 445-453. | 2.6 | 137 | | 13 | THE Î ² -THALASSEMIA MUTATION SPECTRUM IN THE IRANIAN POPULATION. Hemoglobin, 2001, 25, 285-296. | 0.4 | 134 | | 14 | Substantial prevalence of microdeletions of the Y-chromosome in infertile men with idiopathic azoospermia and oligozoospermia detected using a sequence-tagged site-based mapping strategy. Journal of Clinical Endocrinology and Metabolism, 1996, 81, 1347-1352. | 1.8 | 133 | | 15 | Genetics of intellectual disability in consanguineous families. Molecular Psychiatry, 2019, 24, 1027-1039. | 4.1 | 131 | | 16 | Mutations in LOXHD1, an Evolutionarily Conserved Stereociliary Protein, Disrupt Hair Cell Function in Mice and Cause Progressive Hearing Loss in Humans. American Journal of Human Genetics, 2009, 85, 328-337. | 2.6 | 129 | | 17 | A Defect in the TUSC3 Gene Is Associated with Autosomal Recessive Mental Retardation. American Journal of Human Genetics, 2008, 82, 1158-1164. | 2.6 | 127 | | 18 | Identification of Mutations in TRAPPC9, which Encodes the NIK- and IKK-β-Binding Protein, in Nonsyndromic Autosomal-Recessive Mental Retardation. American Journal of Human Genetics, 2009, 85, 909-915. | 2.6 | 120 | | # | Article | IF | CITATIONS | |----|--|------|-----------| | 19 | Ethnic-specific distribution of mutations in 716 patients with congenital adrenal hyperplasia owing to 21-hydroxylase deficiency. Molecular Genetics and Metabolism, 2007, 90, 414-421. | 0.5 | 116 | | 20 | Iranome: A catalog of genomic variations in the Iranian population. Human Mutation, 2019, 40, 1968-1984. | 1.1 | 116 | | 21 | Loss-of-Function Mutations of ILDR1 Cause Autosomal-Recessive Hearing Impairment DFNB42. American Journal of Human Genetics, 2011, 88, 127-137. | 2.6 | 108 | | 22 | Sensorineural deafness and male infertility: a contiguous gene deletion syndrome. Journal of Medical Genetics, 2007, 44, 233-240. | 1.5 | 98 | | 23 | Homozygosity mapping in consanguineous families reveals extreme heterogeneity of non-syndromic autosomal recessive mental retardation and identifies 8 novel gene loci. Human Genetics, 2007, 121, 43-48. | 1.8 | 92 | | 24 | ST3GAL3 Mutations Impair the Development of Higher Cognitive Functions. American Journal of Human Genetics, 2011, 89, 407-414. | 2.6 | 89 | | 25 | A clinical and molecular genetic study of 112 Iranian families with primary microcephaly. Journal of Medical Genetics, 2010, 47, 823-828. | 1.5 | 87 | | 26 | Characterising the spectrum of autosomal recessive hereditary hearing loss in Iran. Journal of Medical Genetics, 2015, 52, 823-829. | 1.5 | 87 | | 27 | GJB2 mutations: Passage through Iran. American Journal of Medical Genetics, Part A, 2005, 133A, 132-137. | 0.7 | 77 | | 28 | Mutation of the conserved polyadenosine RNA binding protein, ZC3H14/dNab2, impairs neural function in <i>Drosophila</i> and humans. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12390-12395. | 3.3 | 77 | | 29 | Mutation of COL11A2 causes autosomal recessive non-syndromic hearing loss at the DFNB53 locus. Journal of Medical Genetics, 2005, 42, e61-e61. | 1.5 | 75 | | 30 | Association of AKT1 haplotype with the risk of schizophrenia in Iranian population. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2006, 141B, 383-386. | 1.1 | 74 | | 31 | Mutations in the Alpha 1,2-Mannosidase Gene, MAN1B1, Cause Autosomal-Recessive Intellectual Disability. American Journal of Human Genetics, 2011, 89, 176-182. | 2.6 | 73 | | 32 | Reducing the exome search space for Mendelian diseases using genetic linkage analysis of exome genotypes. Genome Biology, 2011, 12, R85. | 13.9 | 72 | | 33 | Congenital myasthenic syndrome with tubular aggregates caused by GFPT1 mutations. Journal of Neurology, 2012, 259, 838-850. | 1.8 | 72 | | 34 | SNP array-based homozygosity mapping reveals MCPH1 deletion in family with autosomal recessive mental retardation and mild microcephaly. Human Genetics, 2006, 118, 708-715. | 1.8 | 67 | | 35 | Update of the pompe disease mutation database with 60 novel GAA sequence variants and additional studies on the functional effect of 34 previously reported variants. Human Mutation, 2012, 33, 1161-1165. | 1.1 | 67 | | 36 | CIB2, defective in isolated deafness, is key for auditory hair cell mechanotransduction and survival. EMBO Molecular Medicine, 2017, 9, 1711-1731. | 3.3 | 66 | | # | Article | IF | CITATIONS | |----|---|-----|-----------| | 37 | A novel homozygous missense mutation in the GNE gene of a patient with quadriceps-sparing hereditary inclusion body myopathy associated with muscle inflammation. Neuromuscular Disorders, 2003, 13, 830-834. | 0.3 | 65 | | 38 | A catechol- <i>O</i> -methyltransferase that is essential for auditory function in mice and humans. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14609-14614. | 3.3 | 62 | | 39 | FASN-Dependent Lipid Metabolism Links Neurogenic Stem/Progenitor Cell Activity to Learning and Memory Deficits. Cell Stem Cell, 2020, 27, 98-109.e11. | 5.2 | 62 | | 40 | Structure and Organization of the RBMYGenes on the Human Y Chromosome: Transposition and Amplification of an Ancestral AutosomalhnRNPGGene. Genomics, 1998, 49, 283-289. | 1.3 | 57 | | 41 | The Role of a Novel TRMT1 Gene Mutation and Rare GRM1 Gene Defect in Intellectual Disability in Two Azeri Families. PLoS ONE, 2015, 10, e0129631. | 1.1 | 56 | | 42 | Fourteen-Year Experience of Prenatal Diagnosis of Thalassemia in Iran. Public Health Genomics, 2006, 9, 93-97. | 0.6 | 55 | | 43 | A comprehensive study to determine heterogeneity of autosomal recessive nonsyndromic hearing loss in Iran. American Journal of Medical Genetics, Part A, 2012, 158A, 2485-2492. | 0.7 | 55 | | 44 | Screening for <i>MYO15A</i> gene mutations in autosomal recessive nonsyndromic, <i>GJB2</i> negative Iranian deaf population. American Journal of Medical Genetics, Part A, 2012, 158A, 1857-1864. | 0.7 | 54 | | 45 | <i>PDZD7</i> and hearing loss: More than just a modifier. American Journal of Medical Genetics, Part A, 2015, 167, 2957-2965. | 0.7 | 54 | | 46 | Mutations of the aminoacyl-tRNA-synthetases SARS and WARS2 are implicated in the etiology of autosomal recessive intellectual disability. Human Mutation, 2017, 38, 621-636. | 1.1 | 54 | | 47 | Redefining the MED13L syndrome. European Journal of Human Genetics, 2015, 23, 1308-1317. | 1.4 | 53 | | 48 | Elucidating the spectrum of Â-thalassemia mutations in Iran. Haematologica, 2007, 92, 992-993. | 1.7 | 52 | | 49 | Next generation sequencing in a family with autosomal recessive Kahrizi syndrome (OMIM 612713) reveals a homozygous frameshift mutation in SRD5A3. European Journal of Human Genetics, 2011, 19, 115-117. | 1.4 | 52 | | 50 | Identification of a nonsense mutation in the very low-density lipoprotein receptor gene (VLDLR) in an Iranian family with dysequilibrium syndrome. European Journal of Human Genetics, 2008, 16, 270-273. | 1.4 | 50 | | 51 | Mutations in Grxcr1 Are The Basis for Inner Ear Dysfunction in the Pirouette Mouse. American
Journal of Human Genetics, 2010, 86, 148-160. | 2.6 | 49 | | 52 | Hydroxyurea responsiveness in Â-thalassemic patients is determined by the stress response adaptation of erythroid progenitors and their differentiation propensity. Haematologica, 2013, 98, 696-704. | 1.7 | 49 | | 53 | CDC14A phosphatase is essential for hearing and male fertility in mouse and human. Human Molecular Genetics, 2018, 27, 780-798. | 1.4 | 49 | | 54 | Effect of inbreeding on intellectual disability revisited by trio sequencing. Clinical Genetics, 2019, 95, 151-159. | 1.0 | 49 | | # | Article | IF | Citations | |----|--|-----|-----------| | 55 | Mutations in the first MyTH4 domain of <i>MYO15A</i> are a common cause of DFNB3 hearing loss. Laryngoscope, 2009, 119, 727-733. | 1.1 | 48 | | 56 | Old gene, new phenotype: splice-altering variants in <i>CEACAM16</i> cause recessive non-syndromic hearing impairment. Journal of Medical Genetics, 2018, 55, 555-560. | 1.5 | 48 | | 57 | <i>NPHP4</i> Variants Are Associated With Pleiotropic Heart Malformations. Circulation Research, 2012, 110, 1564-1574. | 2.0 | 46 | | 58 | Variants in <i>CIB2</i> cause DFNB48 and not USH1J. Clinical Genetics, 2018, 93, 812-821. | 1.0 | 46 | | 59 | Autosomal recessive mental retardation: homozygosity mapping identifies 27 single linkage intervals, at least 14 novel loci and several mutation hotspots. Human Genetics, 2011, 129, 141-148. | 1.8 | 45 | | 60 | Genetics of non-syndromic hearing loss in the Middle East. International Journal of Pediatric Otorhinolaryngology, 2014, 78, 2026-2036. | 0.4 | 45 | | 61 | De novo and inherited mutations in the X-linked gene CLCN4 are associated with syndromic intellectual disability and behavior and seizure disorders in males and females. Molecular Psychiatry, 2018, 23, 222-230. | 4.1 | 45 | | 62 | Expanded mutational spectrum in Cohen syndrome, tissue expression, and transcript variants of <i>COH1 </i> . Human Mutation, 2009, 30, E404-E420. | 1.1 | 44 | | 63 | Exonic mutations and exon skipping: Lessons learned from <i>DFNA5</i> . Human Mutation, 2018, 39, 433-440. | 1.1 | 44 | | 64 | Identification of three novelTECTA mutations in Iranian families with autosomal recessive nonsyndromic hearing impairment at the DFNB21 locus. American Journal of Medical Genetics, Part A, 2007, 143A, 1623-1629. | 0.7 | 43 | | 65 | α-Thalassemia Mutation Analyses in Mazandaran Province, North Iran. Hemoglobin, 2009, 33, 115-123. | 0.4 | 43 | | 66 | A novel nonsense mutation in <i>TUSC3</i> is responsible for nonâ€syndromic autosomal recessive mental retardation in a consanguineous Iranian family. American Journal of Medical Genetics, Part A, 2011, 155, 1976-1980. | 0.7 | 43 | | 67 | Molecular Characterization of α-Thalassemia in the Dohuk Region of Iraq. Hemoglobin, 2009, 33, 37-44. | 0.4 | 41 | | 68 | Improved diagnostic yield of neuromuscular disorders applying clinical exome sequencing in patients arising from a consanguineous population. Clinical Genetics, 2017, 91, 386-402. | 1.0 | 41 | | 69 | GJB2 mutations in Iranians with autosomal recessive non-syndromic sensorineural hearing loss.
Human Mutation, 2002, 19, 572-572. | 1.1 | 40 | | 70 | Homozygous <i>THAP1</i> mutations as cause of earlyâ€onset generalized dystonia. Movement Disorders, 2011, 26, 858-861. | 2.2 | 39 | | 71 | Homozygous Truncating Variants in TBC1D23 Cause Pontocerebellar Hypoplasia and Alter Cortical Development. American Journal of Human Genetics, 2017, 101, 428-440. | 2.6 | 39 | | 72 | The spectrum of GJB2 mutations in the Iranian population with non-syndromic hearing loss—A twelve year study. International Journal of Pediatric Otorhinolaryngology, 2012, 76, 1164-1174. | 0.4 | 38 | | # | Article | IF | Citations | |----|---|-----|-----------| | 73 | Variable hearing impairment in a DFNB2 family with a novel <i>MYO7A</i> missense mutation. Clinical Genetics, 2010, 77, 563-571. | 1.0 | 37 | | 74 | A large deletion in GPR98 causes type IIC Usher syndrome in male and female members of an Iranian family. Journal of Medical Genetics, 2009, 46, 272-276. | 1.5 | 36 | | 75 | A Mutation Causes MuSK Reduced Sensitivity to Agrin and Congenital Myasthenia. PLoS ONE, 2013, 8, e53826. | 1.1 | 36 | | 76 | The X <i>mn</i> I and <i>BCL11A</i> Single Nucleotide Polymorphisms May Help Predict Hydroxyurea Response in Iranian β-Thalassemia Patients. Hemoglobin, 2012, 36, 371-380. | 0.4 | 35 | | 77 | The frequency of GJB2 mutations and the \hat{l} " (GJB6-D13S1830) deletion as a cause of autosomal recessive non-syndromic deafness in the Kurdish population. Clinical Genetics, 2004, 65, 506-508. | 1.0 | 34 | | 78 | <i>NDST1</i> missense mutations in autosomal recessive intellectual disability. American Journal of Medical Genetics, Part A, 2014, 164, 2753-2763. | 0.7 | 34 | | 79 | Distinct genetic variation and heterogeneity of the Iranian population. PLoS Genetics, 2019, 15, e1008385. | 1.5 | 34 | | 80 | The second mutation of SYCE1 gene associated with autosomal recessive nonobstructive azoospermia. Journal of Assisted Reproduction and Genetics, 2020, 37, 451-458. | 1.2 | 34 | | 81 | Validation of a reverse-hybridization StripAssay for the simultaneous analysis of common \hat{l} ±-thalassemia point mutations and deletions. Clinical Chemistry and Laboratory Medicine, 2007, 45, 605-10. | 1.4 | 33 | | 82 | Mutation profile of BBS genes in Iranian patients with Bardet–Biedl syndrome: genetic characterization and report of nine novel mutations in five BBS genes. Journal of Human Genetics, 2014, 59, 368-375. | 1.1 | 33 | | 83 | Association of the dopamine transporter gene (DAT1) core promoter polymorphism ?67T variant with schizophrenia. American Journal of Medical Genetics Part A, 2004, 129B, 10-12. | 2.4 | 32 | | 84 | Association between the DRD2 A1 allele and opium addiction in the Iranian population. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2005, 134B, 39-41. | 1.1 | 32 | | 85 | The Cypriot and Iranian National Mutation Frequency Databases. Human Mutation, 2006, 27, 598-599. | 1.1 | 32 | | 86 | Association analysis of the dopamine transporter (DAT1)-67A/T polymorphism in bipolar disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2005, 135B, 47-49. | 1.1 | 31 | | 87 | α-Thalassemia Mutations in Khuzestan Province, Southwest Iran. Hemoglobin, 2008, 32, 546-552. | 0.4 | 31 | | 88 | Integrated Sequence Analysis Pipeline Provides One-Stop Solution for Identifying Disease-Causing Mutations. Human Mutation, 2014, 35, 1427-1435. | 1.1 | 31 | | 89 | α-Thalassemia Mutations in Gilan Province, North Iran. Hemoglobin, 2009, 33, 235-241. | 0.4 | 30 | | 90 | Identification of SLC26A4 gene mutations in Iranian families with hereditary hearing impairment. European Journal of Pediatrics, 2009, 168, 651-653. | 1.3 | 30 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 91 | A novel mutation adjacent to the <i>Bth</i> mouse mutation in the <i>TMC1</i> gene makes this mouse an excellent model of human deafness at the DFNA36 locus. Clinical Genetics, 2010, 77, 395-398. | 1.0 | 29 | | 92 | Mutations in <i>TMC1</i> are a Common Cause of DFNB7/11 Hearing Loss in the Iranian Population. Annals of Otology, Rhinology and Laryngology, 2010, 119, 830-835. | 0.6 | 29 | | 93 | The Coxsackievirus and Adenovirus Receptor: A new adhesion protein in cochlear development.
Hearing Research, 2006, 215, 1-9. | 0.9 | 28 | | 94 | Î ² -Thalassemia Mutations in the Kurdish Population of Northeastern Iraq. Hemoglobin, 2010, 34, 469-476. | 0.4 | 27 | | 95 | Homozygous SLC6A17 Mutations Cause Autosomal-Recessive Intellectual Disability with Progressive Tremor, Speech Impairment, and Behavioral Problems. American Journal of Human Genetics, 2015, 96, 386-396. | 2.6 | 27 | | 96 | Mutations in the histamine <i>N</i> methyltransferase gene, <i>HNMT</i> , are associated with nonsyndromic autosomal recessive intellectual disability. Human Molecular Genetics, 2015, 24, 5697-5710. | 1.4 | 27 | | 97 | A novel DFNA5 mutation does not cause hearing loss in an Iranian family. Journal of Human Genetics, 2007, 52, 549-552. | 1.1 | 26 | | 98 | Rare and unexpected mutations among Iranian beta-thalassemia patients and prenatal samples discovered by reverse-hybridization and DNA sequencing. Haematologica, 2002, 87, 1113-4. | 1.7 | 26 | | 99 | The Iranian Human Mutation Gene Bank: A data and sample resource for worldwide collaborative genetics research. Human Mutation, 2003, 21, 146-150. | 1.1 | 25 | | 100 | Core promoter STRs: Novel mechanism for inter-individual variation in gene expression in humans. Gene, 2012, 492, 195-198. | 1.0 | 25 | | 101 | Spectrum of GJB2 (Cx26) gene mutations in Iranian Azeri patients with nonsyndromic autosomal recessive hearing loss. International Journal of Pediatric Otorhinolaryngology, 2012, 76, 268-271. | 0.4 | 24 | | 102 | The power of the Mediator complex-Expanding the genetic architecture and phenotypic spectrum of MED12 -related disorders. Clinical Genetics, 2018, 94, 450-456. | 1.0 | 24 | | 103 | Bi-allelic Pathogenic Variants in TUBGCP2 Cause Microcephaly and Lissencephaly Spectrum Disorders.
American Journal of Human Genetics, 2019, 105, 1005-1015. | 2.6 | 24 | | 104 | C677T Methylentetrahydrofulate Reductase and Angiotensin Converting Enzyme Gene Polymorphisms in Patients with Alzheimer's Disease in Iranian
Population. Neurochemical Research, 2006, 31, 1079-1083. | 1.6 | 22 | | 105 | A defect in the CLIP1 gene (CLIP-170) can cause autosomal recessive intellectual disability. European Journal of Human Genetics, 2015, 23, 331-336. | 1.4 | 22 | | 106 | Determining the cause of patchwork HBA1 and HBA2 genes: recurrent gene conversion or crossing over fixation events. Haematologica, 2006, 91, 297-302. | 1.7 | 22 | | 107 | High Prevalence of the â^α3.7Deletion Among Thalassemia Patients in Iran. Hemoglobin, 2003, 27, 53-55. | 0.4 | 21 | | 108 | Molecular Mechanisms Underlying Thalassemia Intermedia in Iran. Genetic Testing and Molecular Biomarkers, 2008, 12, 549-556. | 1.7 | 21 | | # | Article | IF | Citations | |-----|--|-----|-----------| | 109 | Interaction of an $\langle b \rangle \hat{l} \pm \langle b \rangle$ -Globin Gene Triplication with $\langle b \rangle \hat{l}^2 \langle b \rangle$ -Globin Gene Mutations in Iranian Patients with $\langle b \rangle \hat{l}^2 \langle b \rangle$ -Thalassemia Intermedia. Hemoglobin, 2015, 39, 201-206. | 0.4 | 21 | | 110 | POLRMT mutations impair mitochondrial transcription causing neurological disease. Nature Communications, 2021, 12, 1135. | 5.8 | 21 | | 111 | Attention-deficit/hyperactivity disorder (ADHD) association with the DAT1 core promoter â^67 T allele. Brain Research, 2006, 1101, 1-4. | 1.1 | 20 | | 112 | Frequency of Positive XmnI $G\hat{I}^3$ polymorphism and coinheritance of common alpha thalassemia mutations do not show statistically significant difference between thalassemia major and intermedia cases with homozygous IVSII-1 mutation. Blood Cells, Molecules, and Diseases, 2010, 44, 95-99. | 0.6 | 20 | | 113 | Genotype-Phenotype Correlation In Iranian Patients With Hb H Disease. Hemoglobin, 2011, 35, 40-46. | 0.4 | 20 | | 114 | Retinitis Pigmentosa, Cutis Laxa, and Pseudoxanthoma Elasticum–Like Skin Manifestations Associated with GGCX Mutations. Journal of Investigative Dermatology, 2014, 134, 2331-2338. | 0.3 | 20 | | 115 | Copy Number Variants in Patients with Autism and Additional Clinical Features: Report of VIPR2 Duplication and a Novel Microduplication Syndrome. Molecular Neurobiology, 2017, 54, 7019-7027. | 1.9 | 20 | | 116 | Exceptional human core promoter nucleotide compositions. Gene, 2011, 475, 79-86. | 1.0 | 19 | | 117 | Association Study of the <i>TREM2 </i> Gene and Identification of a Novel Variant in Exon 2 in Iranian Patients with Late-Onset Alzheimer's Disease. Medical Principles and Practice, 2015, 24, 351-354. | 1.1 | 19 | | 118 | Prevalence of common MEFV mutations and carrier frequencies in a large cohort of Iranian populations. Journal of Genetics, 2016, 95, 667-674. | 0.4 | 19 | | 119 | Biallelic missense variants in ZBTB11 can cause intellectual disability in humans. Human Molecular Genetics, 2018, 27, 3177-3188. | 1.4 | 19 | | 120 | SARSâ€CoVâ€2 outbreak in Iran: The dynamics of the epidemic and evidence on two independent introductions. Transboundary and Emerging Diseases, 2022, 69, 1375-1386. | 1.3 | 19 | | 121 | alpha-globin gene deletion and point mutation analysis among in Iranian patients with microcytic hypochromic anemia. Haematologica, 2003, 88, 1196-7. | 1.7 | 19 | | 122 | A point mutation at the calreticulin gene core promoter conserved sequence in a case of schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2006, 141B, 294-295. | 1.1 | 18 | | 123 | A novel splice site mutation in the <i>RDX</i> gene causes DFNB24 hearing loss in an Iranian family.
American Journal of Medical Genetics, Part A, 2009, 149A, 555-558. | 0.7 | 18 | | 124 | Carrier frequency of SMA by quantitative analysis of the SMN1 deletion in the Iranian population. European Journal of Neurology, 2010, 17, 160-162. | 1.7 | 18 | | 125 | Reversion of the human calreticulin gene promoter to the ancestral type as a result of a novel psychosis-associated mutation. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 541-544. | 2.5 | 18 | | 126 | Prevalence of <i>GJB2</i> -associated deafness and outcomes of cochlear implantation in Iran. Journal of Laryngology and Otology, 2011, 125, 455-459. | 0.4 | 18 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 127 | LGMD2E is the most common type of sarcoglycanopathies in the Iranian population. Journal of Neurogenetics, 2017, 31, 161-169. | 0.6 | 18 | | 128 | BOD1 Is Required for Cognitive Function in Humans and Drosophila. PLoS Genetics, 2016, 12, e1006022. | 1.5 | 18 | | 129 | Heterogeneity of Hereditary Hearing Loss in Iran: a Comprehensive Review. Archives of Iranian Medicine, 2016, 19, 720-728. | 0.2 | 18 | | 130 | Gender dimorphism in the DAT1 â^67 T-allele homozygosity and predisposition to bipolar disorder. Brain Research, 2007, 1144, 142-145. | 1.1 | 17 | | 131 | GJB2 mutations in Baluchi population. Journal of Genetics, 2008, 87, 195-197. | 0.4 | 17 | | 132 | An autosomal recessive syndrome of severe mental retardation, cataract, coloboma and kyphosis maps to the pericentromeric region of chromosome 4. European Journal of Human Genetics, 2009, 17, 125-128. | 1.4 | 17 | | 133 | Whole Genome Linkage Analysis Followed by Whole Exome Sequencing Identifies Nicastrin (NCSTN) as a Causative Gene in a Multiplex Family with l³-Secretase Spectrum of Autoinflammatory Skin Phenotypes. Journal of Investigative Dermatology, 2016, 136, 1283-1286. | 0.3 | 17 | | 134 | Missense variants in AIMP1 gene are implicated in autosomal recessive intellectual disability without neurodegeneration. European Journal of Human Genetics, 2016, 24, 392-399. | 1.4 | 17 | | 135 | Homozygous Null TBX4 Mutations Lead to Posterior Amelia with Pelvic and Pulmonary Hypoplasia.
American Journal of Human Genetics, 2019, 105, 1294-1301. | 2.6 | 17 | | 136 | A novel polymorphic purine complex at the 1.5 kb upstream region of the human caveolinâ€1 gene and risk of Alzheimer's disease; Extraâ€short alleles and accumulated allele homozygosity. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2009, 150B, 248-253. | 1,1 | 16 | | 137 | Diagnostic values of GHSR DNA methylation pattern in breast cancer. Breast Cancer Research and Treatment, 2012, 135, 705-713. | 1.1 | 16 | | 138 | Investigation of primary microcephaly in Bushehr province of Iran: novel <i><scp>STIL</scp></i> andÂ <i><scp>ASPM</scp></i> mutations. Clinical Genetics, 2013, 83, 488-490. | 1.0 | 16 | | 139 | A novel <i>ALDH5A1</i> mutation is associated with succinic semialdehyde dehydrogenase deficiency and severe intellectual disability in an Iranian family. American Journal of Medical Genetics, Part A, 2013, 161, 1915-1922. | 0.7 | 16 | | 140 | Support for down-tuning of the calreticulin gene in the process of human evolution. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 1770-1773. | 2.5 | 15 | | 141 | Did the <i>GJB2</i> 35delG mutation originate in Iran?. American Journal of Medical Genetics, Part A, 2011, 155, 2453-2458. | 0.7 | 15 | | 142 | NGLY1 deficiency: Novel variants and literature review. European Journal of Medical Genetics, 2021, 64, 104146. | 0.7 | 15 | | 143 | Identifying the causes of recurrent pregnancy loss in consanguineous couples using whole exome sequencing on the products of miscarriage with no chromosomal abnormalities. Scientific Reports, 2021, 11, 6952. | 1.6 | 15 | | 144 | Impact of whole exome sequencing among Iranian patients with autosomal recessive retinitis pigmentosa. Archives of Iranian Medicine, 2015, 18, 776-85. | 0.2 | 15 | | # | Article | IF | Citations | |-----|--|-----|-----------| | 145 | Prenatal Diagnosis for \hat{I}^2 -Thalassemia Major in the Iranian Province of Hormozgan. Hemoglobin, 2008, 32, 539-545. | 0.4 | 14 | | 146 | M-banding characterization of a 16p11.2p13.1 tandem duplication in a child with autism, neurodevelopmental delay and dysmorphism. European Journal of Medical Genetics, 2008, 51, 608-614. | 0.7 | 14 | | 147 | miRNA mutations are not a common cause of deafness. American Journal of Medical Genetics, Part A, 2010, 152A, 646-652. | 0.7 | 14 | | 148 | A novel mutation of the USH2C (GPR98) gene in an Iranian family with Usher syndrome type II. Journal of Genetics, 2014, 93, 837-841. | 0.4 | 14 | | 149 | Two novel mutations in ILDR1 gene cause autosomal recessive nonsyndromic hearing loss in consanguineous Iranian families. Journal of Genetics, 2015, 94, 483-487. | 0.4 | 14 | | 150 | A novel splicing variant in FLNC gene responsible for a highly penetrant familial dilated cardiomyopathy in an extended Iranian family. Gene, 2018, 659, 160-167. | 1.0 | 14 | | 151 | Genomic structure of a Y-specific ribonucleic acid binding motif- containing gene: a putative candidate for a subset of male infertility. Journal of Clinical Endocrinology and Metabolism, 1996, 81, 2159-2164. | 1.8 | 14 | | 152 | Mutation analysis of the DBC2 gene in sporadic and familial breast cancer. Acta $Oncol\tilde{A}^3$ gica, 2007, 46, 770-772. | 0.8 | 13 | | 153 | Fragile X syndrome screening of families with consanguineous and non-consanguineous parents in the Iranian population. European Journal of Medical Genetics, 2009, 52, 170-173. | 0.7 | 13 | | 154 | Two novel
SLC26A4 mutations in Iranian families with autosomal recessive hearing loss. International Journal of Pediatric Otorhinolaryngology, 2012, 76, 845-850. | 0.4 | 13 | | 155 | Diagnostic pitfalls of less well recognized HbH disease. Blood Cells, Molecules, and Diseases, 2015, 55, 387-395. | 0.6 | 13 | | 156 | YIF1B mutations cause a post-natal neurodevelopmental syndrome associated with Golgi and primary cilium alterations. Brain, 2020, 143, 2911-2928. | 3.7 | 13 | | 157 | Utility Of The Multivariate Approach In Predicting β-Thalassemia Intermedia Or β-Thalassemia Major Types In Iranian Patients. Hemoglobin, 2013, 37, 413-422. | 0.4 | 12 | | 158 | Investigating the <i>CFH</i> Gene Polymorphisms as a Risk Factor for Age-related Macular Degeneration in an Iranian Population. Ophthalmic Genetics, 2016, 37, 144-149. | 0.5 | 12 | | 159 | <i>GPR126</i> : A novel candidate gene implicated in autosomal recessive intellectual disability.
American Journal of Medical Genetics, Part A, 2019, 179, 13-19. | 0.7 | 12 | | 160 | SZT2 mutation in a boy with intellectual disability, seizures and autistic features. European Journal of Medical Genetics, 2019, 62, 103556. | 0.7 | 12 | | 161 | Sensorineural deafness and male infertility: a contiguous gene deletion syndrome. BMJ Case Reports, 2009, 2009, bcr0820080645-bcr0820080645. | 0.2 | 12 | | 162 | Novel mutations responsible for α-thalassemia in Iranian families. Hemoglobin, 2013, 37, 148-59. | 0.4 | 12 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 163 | No association between the DAT1 10-repeat allele and ADHD in the Iranian population. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 110-111. | 1.1 | 11 | | 164 | Novel extreme homozygote haplotypes at the human caveolin 1 gene upstream purine complex in sporadic Alzheimer's disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 347-349. | 1.1 | 11 | | 165 | Chromosome abnormality rate among Iranian patients with idiopathic mental retardation from consanguineous marriages. Archives of Medical Science, 2011, 2, 321-325. | 0.4 | 11 | | 166 | The influence of the BCL11A polymorphism on the phenotype of patients with beta thalassemia could be affected by the beta globin locus control region and/or the Xmn1-HBG2 genotypic background. Blood Cells, Molecules, and Diseases, 2013, 51, 80-84. | 0.6 | 11 | | 167 | The Spectrum of $\langle i \rangle \hat{l} \pm \langle i \rangle$ -Thalassemia Mutations in the Kurdish Population of Northeastern Iraq. Hemoglobin, 2013, 37, 56-64. | 0.4 | 11 | | 168 | Grxcr2 is required for stereocilia morphogenesis in the cochlea. PLoS ONE, 2018, 13, e0201713. | 1.1 | 11 | | 169 | Common MEFV mutation analysis in 36 Iranian patients with familial Mediterranean fever: clinical and demographic significance. Modern Rheumatology, 2010, 20, 566-572. | 0.9 | 11 | | 170 | Association of polymorphisms at LDLR locus with coronary artery disease independently from lipid profile. Acta Medica Iranica, 2014, 52, 352-9. | 0.8 | 11 | | 171 | Skew in the human caveolin 1 gene upstream purine complex homozygote haplotype compartment in multiple sclerosis. Journal of Neuroimmunology, 2009, 216, 103-107. | 1.1 | 10 | | 172 | Novel mutations in the calreticulin gene core promoter and coding sequence in schizoaffective disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 706-709. | 1.1 | 10 | | 173 | The modifying effect of Xmn1-HBG2 on thalassemic phenotype is associated with its linked elements in the beta globin locus control region, including the palindromic site at 5′HS4. Blood Cells, Molecules, and Diseases, 2012, 48, 1-5. | 0.6 | 10 | | 174 | Chromosomal aberrations in pregnancy and fetal loss: Insight on the effect of consanguinity, review of 1625 cases. Molecular Genetics & Enomic Medicine, 2019, 7, e820. | 0.6 | 10 | | 175 | Homozygous variants in the gene <i>SCAPER</i> cause syndromic intellectual disability. American Journal of Medical Genetics, Part A, 2019, 179, 1214-1225. | 0.7 | 10 | | 176 | Genetic Studies in Intellectual Disability and Behavioral Impairment. Archives of Iranian Medicine, 2016, 19, 363-75. | 0.2 | 10 | | 177 | A mutation in the calreticulin gene promoter in a family case of schizoaffective disorder leads to its aberrant transcriptional activation. Brain Research, 2008, 1239, 36-41. | 1.1 | 9 | | 178 | Common MEFV mutation analysis in 36 Iranian patients with familial Mediterranean fever: clinical and demographic significance. Modern Rheumatology, 2010, 20, 566-572. | 0.9 | 9 | | 179 | Two Iranian families with a novel mutation in <i>GJB2</i> causing autosomal dominant nonsyndromic hearing loss. American Journal of Medical Genetics, Part A, 2011, 155, 1202-1211. | 0.7 | 9 | | 180 | Characterizing a Cohort of \hat{l}_{\pm} -Thalassemia Couples Collected During Screening for Hemoglobinopathies: 14 Years of an Iranian Experience. Hemoglobin, 2014, 38, 153-157. | 0.4 | 9 | | # | Article | IF | CITATIONS | |-----|---|------------|-----------| | 181 | Identification of a founder mutation for Pendred syndrome in families from northwest Iran. International Journal of Pediatric Otorhinolaryngology, 2014, 78, 1828-1832. | 0.4 | 9 | | 182 | Mutation Screening of the <i> Krý ppel-Like Factor $1 < i$ > Gene Using Single-Strand Conformational Polymorphism in a Cohort of Iranian $1^2 < b$ >-Thalassemia Patients. Hemoglobin, 2015, 39, 24-29.</i> | 0.4 | 9 | | 183 | Copy number variations of six and seven α-globin genes in a family with intermedia and major thalassemia phenotypes. Expert Review of Hematology, 2015, 8, 693-698. | 1.0 | 9 | | 184 | SLC52A2 mutations cause SCABD2 phenotype: A second report. International Journal of Pediatric Otorhinolaryngology, 2018, 104, 195-199. | 0.4 | 9 | | 185 | Novel mutations in MYTH4-FERM domains of myosin 15 are associated with autosomal recessive nonsyndromic hearing loss. International Journal of Pediatric Otorhinolaryngology, 2019, 117, 115-126. | 0.4 | 9 | | 186 | Subcellular relocalization and nuclear redistribution of the RNA methyltransferases TRMT1 and TRMT1L upon neuronal activation. RNA Biology, 2021, 18, 1905-1919. | 1.5 | 9 | | 187 | Novel Mutations in KCNQ4, LHFPL5 and COCH Genes in Iranian Families with Hearing Impairment. Archives of Iranian Medicine, 2019, 22, 189-197. | 0.2 | 9 | | 188 | c <scp>AMP</scp> response elementâ€binding protein 1 is required for hydroxyureaâ€mediated induction of γâ€globin expression in <scp>K</scp> 562 cells. Clinical and Experimental Pharmacology and Physiology, 2012, 39, 510-517. | 0.9 | 8 | | 189 | Hb Dartmouth (<i>HBA2</i> : c.200T>C): An α2-Globin Gene Associated with Hb H Disease in One Homozygous Patient. Hemoglobin, 2015, 39, 152-155. | 0.4 | 8 | | 190 | Homozygosity for the AATAAA > AATA- - Polyadenylation Site Mutation on the α2-Globin Gene Caus
Transfusion-Dependent Hb H Disease in an Iranian Patient: A Case Report. Hemoglobin, 2015, 39, 355-8. | ing
0:4 | 8 | | 191 | Report of a patient with limb-girdle muscular dystrophy, ptosis and ophthalmoparesis caused by plectinopathy. Archives of Iranian Medicine, 2015, 18, 60-4. | 0.2 | 8 | | 192 | Hb Dhonburi (Neapolis) [β126(H4)Valâ†'Gly] Identified in a Family from Northern Iran. Hemoglobin, 2004, 28, 353-356. | 0.4 | 7 | | 193 | Genetic Screening of Leber Congenital Amaurosis in a Large Consanguineous Iranian Family. Ophthalmic Genetics, 2007, 28, 224-228. | 0.5 | 7 | | 194 | The human caveolin 1 gene upstream purine complex and neurodegenerationâ€"A common signature. Journal of Neuroimmunology, 2011, 236, 106-110. | 1.1 | 7 | | 195 | Pattern of immunoglobulin and T-cell receptor- $\hat{l}'\hat{l}^3$ gene rearrangements in Iranian children with B-precursor acute lymphoblastic leukemia. Hematology, 2014, 19, 259-266. | 0.7 | 7 | | 196 | Novel mutations in mitochondrial carrier family gene SLC25A38, causing congenital sideroblastic anemia in Iranian families, identified by whole exome sequencing. Blood Cells, Molecules, and Diseases, 2018, 71, 39-44. | 0.6 | 7 | | 197 | Frequency of \hat{I} ±-Globin Gene Triplications and Coinheritance with \hat{I}^2 -Globin Gene Mutations in the Iranian Population. Hemoglobin, 2018, 42, 252-256. | 0.4 | 7 | | 198 | CAPN1 and hereditary spastic paraplegia: a novel variant in an Iranian family and overview of the genotype-phenotype correlation. International Journal of Neuroscience, 2020, 131, 1-13. | 0.8 | 7 | | # | Article | IF | Citations | |-----|---|-----|-----------| | 199 | Globin Chain Synthesis is a Useful Complementary Tool in the Differential Diagnosis of Thalassemias. Hemoglobin, 2007, 31, 333-341. | 0.4 | 6 | | 200 | Evaluation of chromosomal aberrations caused by air pollutants in some taxi drivers from two polluted districts of urban Tehran and its comparison with drivers from rural areas of Lahijan: a pilot study. Journal of Environmental Health Science & Engineering, 2014, 12, 144. | 1.4 | 6 | | 201 | First Report of a Dominantly Inherited \hat{l}^2 -Thalassemia Caused by a Novel Elongated \hat{l}^2 -Globin Chain. Hemoglobin, 2016, 40, 102-107. | 0.4 | 6 | | 202 | Point mutations which should not be
overlooked in Hb H disease. Expert Review of Hematology, 2016, 9, 107-113. | 1.0 | 6 | | 203 | Genotype and phenotype analysis of 43 Iranian facioscapulohumeral muscular dystrophy patients; Evidence for anticipation. Neuromuscular Disorders, 2018, 28, 303-314. | 0.3 | 6 | | 204 | High expression of miRâ€510 was associated with CGG expansion located at upstream of FMR1 into full mutation. Journal of Cellular Biochemistry, 2019, 120, 1916-1923. | 1.2 | 6 | | 205 | Adultâ€onset veryâ€longâ€chain acylâ€CoA dehydrogenase deficiency (VLCADD). European Journal of Neurology, 2020, 27, 2257-2266. | 1.7 | 6 | | 206 | Anticipation Can Be More Common in Hereditary Spastic Paraplegia with <i>SPAST</i> It Appears. Canadian Journal of Neurological Sciences, 2022, 49, 651-661. | 0.3 | 6 | | 207 | Limbic System Associated Membrane Protein Mutation in an Iranian Family Diagnosed with Ménière's
Disease. Archives of Iranian Medicine, 2020, 23, 319-325. | 0.2 | 6 | | 208 | Molecular Diagnosis of Hereditary Neuropathies by Whole Exome Sequencing and Expanding the Phenotype Spectrum. Archives of Iranian Medicine, 2020, 23, 426-433. | 0.2 | 6 | | 209 | Genetic etiology of hearing loss in Iran. Human Genetics, 2022, 141, 623-631. | 1.8 | 6 | | 210 | New evidence for the role of calpain 10 in autosomal recessive intellectual disability: identification of two novel nonsense variants by exome sequencing in Iranian families. Archives of Iranian Medicine, 2015, 18, 179-84. | 0.2 | 6 | | 211 | Genetic Investigation of an Iranian Supercentenarian by Whole Exome Sequencing. Archives of Iranian Medicine, 2015, 18, 688-97. | 0.2 | 6 | | 212 | Investigation of ATP6V1B1 and ATP6V0A4 genes causing hereditary hearing loss associated with distal renal tubular acidosis in Iranian families. Journal of Laryngology and Otology, 2014, 128, 1056-1059. | 0.4 | 5 | | 213 | Report of limb girdle muscular dystrophy type 2a in 6 Iranian patients, one with a novel deletion in CAPN3 gene. Neuromuscular Disorders, 2016, 26, 277-282. | 0.3 | 5 | | 214 | Identification of diseaseâ€causing variants in the <i>EXOSC</i> gene family underlying autosomal recessive intellectual disability in Iranian families. Clinical Genetics, 2019, 95, 718-725. | 1.0 | 5 | | 215 | Optimizing A Lipocomplex-Based Gene Transfer Method into HeLa Cell Line. Cell Journal, 2014, 15, 372-7. | 0.2 | 5 | | 216 | ZBTB11 dysfunction: spectrum of brain abnormalities, biochemical signature and cellular consequences. Brain, 2022, 145, 2602-2616. | 3.7 | 5 | | # | Article | IF | Citations | |-----|---|-----|-----------| | 217 | tRNA Methyltransferase Defects and Intellectual Disability. Archives of Iranian Medicine, 2018, 21, 478-485. | 0.2 | 5 | | 218 | Phenotype and genotype spectrum of variants in guanine nucleotide exchange factor genes in a broad cohort of Iranian patients. Molecular Genetics & Enomic Medicine, 2022, 10, e1894. | 0.6 | 5 | | 219 | Screening of Iranian Thalassemic Families for the Most Common Deletions of the β-Globin Gene Cluster. Hemoglobin, 2007, 31, 463-469. | 0.4 | 4 | | 220 | Alopeciamental retardation syndrome: clinical and molecular characterization of four patients. British Journal of Dermatology, 2008, 159, ???-???. | 1.4 | 4 | | 221 | A REPORT OF 8 CASES WITH HEMOGLOBIN H DISEASE IN AN IRANIAN FAMILY. Pediatric Hematology and Oncology, 2010, 27, 405-412. | 0.3 | 4 | | 222 | Finding mutation within non-coding region of GJB2 reveals its importance in genetic testing of Hearing Loss in Iranian population. International Journal of Pediatric Otorhinolaryngology, 2015, 79, 136-138. | 0.4 | 4 | | 223 | <i>CNKSR1</i> gene defect can cause syndromic autosomal recessive intellectual disability. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2018, 177, 691-699. | 1.1 | 4 | | 224 | Whole-Transcriptome Analysis Reveals Dysregulation of Actin-Cytoskeleton Pathway in Intellectual Disability Patients. Neuroscience, 2019, 404, 423-444. | 1.1 | 4 | | 225 | Exome sequencing utility in defining the genetic landscape of hearing loss and novelâ€gene discovery in Iran. Clinical Genetics, 2021, 100, 59-78. | 1.0 | 4 | | 226 | Clinical and Genetic Characteristics of Splicing Variant in CYP27A1 in an Iranian Family with Cerebrotendinous xanthomatosis. Iranian Biomedical Journal, 2021, 25, 132-139. | 0.4 | 4 | | 227 | Calpains: Diverse Functions but Enigmatic. Archives of Iranian Medicine, 2018, 21, 170-179. | 0.2 | 4 | | 228 | Exome Sequencing and Linkage Analysis Identified Novel Candidate Genes in Recessive Intellectual Disability Associated with Ataxia. Archives of Iranian Medicine, 2015, 18, 670-82. | 0.2 | 4 | | 229 | Brachyphalangy, polydactyly and tibial aplasia/hypoplasia syndrome (OMIM 609945): case report and review of the literature. European Journal of Pediatrics, 2010, 169, 1535-1539. | 1.3 | 3 | | 230 | Analyzing $5\hat{a}\in^2$ HS3 and $5\hat{a}\in^2$ HS4 LCR core regions and NF-E2 in Iranian thalassemia intermedia patients with normal or carrier status for beta-globin mutations. Blood Cells, Molecules, and Diseases, 2011, 46, 201-205. | 0.6 | 3 | | 231 | Hemoglobin Q-Iran detected in family members from Northern Iran: a case report. Journal of Medical Case Reports, 2012, 6, 47. | 0.4 | 3 | | 232 | Mutations on thel±2-Globin Gene That May Triggerl±+-Thalassemia. Hemoglobin, 2015, 39, 398-402. | 0.4 | 3 | | 233 | Novel variants in Iranian individuals suspected to have inherited red blood cell disorders, including bone marrow failure syndromes. Haematologica, 2020, 105, e1-e4. | 1.7 | 3 | | 234 | A novel PTC mutation in the BTB domain of KLHL7 gene in two patients with Bohring-Opitz syndrome-like features. European Journal of Medical Genetics, 2020, 63, 103849. | 0.7 | 3 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 235 | <i>CEP104</i> and <i>CEP290</i> ; Genes with Ciliary Functions Cause Intellectual Disability in Multiple Families. Archives of Iranian Medicine, 2021, 24, 364-373. | 0.2 | 3 | | 236 | The recurrent missense mutation p.(Arg367Trp) in YARS1 causes a distinct neurodevelopmental phenotype. Journal of Molecular Medicine, 2021, 99, 1755-1768. | 1.7 | 3 | | 237 | Identification of Chromosome Abnormalities in Subtelomeric Regions Using Multiplex Ligation
Dependent Probe Amplification (MLPA) Technique in 100 Iranian Patients With Idiopathic Mental
Retardation. Iranian Red Crescent Medical Journal, 2013, 15, e8221. | 0.5 | 3 | | 238 | The <i>PTRHD1</i> Mutation in Intellectual Disability. Archives of Iranian Medicine, 2021, 24, 747-751. | 0.2 | 3 | | 239 | Intellectual Disability and Ataxia: Genetic Collisions. Archives of Iranian Medicine, 2018, 21, 29-40. | 0.2 | 3 | | 240 | A 21 Nucleotide Duplication on the $\hat{l}\pm 1$ - and $\hat{l}\pm 2$ -Globin Genes Involves a Variety of Hypochromic Microcytic Anemias, From Mild to Hb H Disease. Hemoglobin, 2015, 39, 196-200. | 0.4 | 2 | | 241 | Characterization of Homozygous Hb Setif (<i>HBA2</i> : c.283G>T) in the Iranian Population. Hemoglobin, 2016, 40, 53-55. | 0.4 | 2 | | 242 | Identification of Mutations Causing Aberrant Termination and Deficient Splice Donor Site on the <i>HBA1 </i> Gene. Hemoglobin, 2016, 40, 38-43. | 0.4 | 2 | | 243 | Heterozygosity for the Novel HBA2: c.*91_*92delTA Polyadenylation Site Variant on the α2-Globin Gene Expanding the Genetic Spectrum of α-Thalassemia in Iran. Hemoglobin, 2020, 44, 423-426. | 0.4 | 2 | | 244 | When transcripts matter: delineating between non-syndromic hearing loss DFNB32 and hearing impairment infertile male syndrome (HIIMS). Journal of Human Genetics, 2020, 65, 609-617. | 1.1 | 2 | | 245 | Comprehensive <scp>genotypeâ€phenotype</scp> correlation in <scp>AP</scp> â€4 deficiency syndrome; Adding data from a large cohort of Iranian patients. Clinical Genetics, 2021, 99, 187-192. | 1.0 | 2 | | 246 | The First Case of BENTA Disease (B Cell Expansion with NF-κB and T Cell Anergy) from Iran. Journal of Clinical Immunology, 2021, 41, 811-813. | 2.0 | 2 | | 247 | Novel Mutation in <i>LARP7</i> in Two Iranian Consanguineous Families with Syndromic Intellectual Disability and Facial Dysmorphism. Archives of Iranian Medicine, 2020, 23, 842-847. | 0.2 | 2 | | 248 | A Novel Deletion Mutation in ASPM Gene in an Iranian Family with Autosomal Recessive Primary Microcephaly. Iranian Journal of Child Neurology, 2013, 7, 23-30. | 0.2 | 2 | | 249 | Carrier Testing in Known Autosomal Recessive Intellectual Disability Genes in an Iranian Healthy Individual Using Exome Sequencing. Archives of Iranian Medicine, 2015, 18, 643-69. | 0.2 | 2 | | 250 | Interstitial deletion of the short arm of chromosome $10 del(10)(p11.2p12.32)$ in a patient with congenital heart disease, minor dysmorphism, and mental retardation. American Journal of Medical Genetics, Part A, 2008, 146A, 3223-3226. | 0.7 | 1 | | 251 | Genomic characterization of some Iranian children with idiopathic mental retardation using array comparative genomic hybridization. Indian Journal of Human Genetics, 2013, 19, 443. | 0.7 | 1 | | 252 | G130V de novo mutation in an Iranian pedigree with nonsyndromic hearing loss without palmoplantar keratoderma. International Journal of Pediatric Otorhinolaryngology, 2019, 126, 109607. | 0.4 | 1 | | # | Article | IF | Citations | |-----|---|-----|-----------| | 253 | A
splice-altering variant in LARP7 gene leads to exon exclusion. Gene Reports, 2019, 15, 100375. | 0.4 | 1 | | 254 | Whole genome sequencing identifies a duplicated region encompassing Xq13.2q13.3 in a large Iranian family with intellectual disability. Molecular Genetics & Enomic Medicine, 2020, 8, e1418. | 0.6 | 1 | | 255 | Discovery of a neuromuscular syndrome caused by biallelic variants in ASCC3. Human Genetics and Genomics Advances, 2021, 2, 100024. | 1.0 | 1 | | 256 | A Novel βO-Thalassemia Mutation, HBB: c.356_357delTT [Codon 118 (–TT)] in an Iraqi Kurd. Hemoglobin, 2021, 45, 212-214. | 0.4 | 1 | | 257 | Investigation of genetic causes of intellectual disability in kerman province, South East of iran.
Iranian Red Crescent Medical Journal, 2012, 14, 79-85. | 0.5 | 1 | | 258 | Investigation of Chromosomal Abnormalities and Microdeletion/ Microduplication(s) in Fifty Iranian Patients with Multiple Congenital Anomalies. Cell Journal, 2019, 21, 337-349. | 0.2 | 1 | | 259 | Brief Report of Variants Detected in Hereditary Hearing Loss Cases in Iran over a 3-Year Period. Iranian
Journal of Public Health, 2019, 48, 1910-1915. | 0.3 | 1 | | 260 | Intellectual disability associated with craniofacial dysmorphism due to POLR3B mutation and defect in spliceosomal machinery. BMC Medical Genomics, 2022, 15, 89. | 0.7 | 1 | | 261 | De novo Mutation in CACNA1S Gene in a 20-Year-Old Man Diagnosed with Metabolic Myopathy. Archives of Iranian Medicine, 2017, 20, 617-620. | 0.2 | 1 | | 262 | Mutations in the Alpha 1,2-Mannosidase Gene, MAN1B1, Cause Autosomal-Recessive Intellectual Disability. American Journal of Human Genetics, 2011, 89, 348. | 2.6 | 0 | | 263 | A novel variant of C12orf4 linked to autosomal recessive intellectual disability type 66 with phenotype expansion. Journal of Gene Medicine, 2021, , e3406. | 1.4 | 0 | | 264 | Contribution of Iran in Elucidating the Genetic Causes of Autosomal Recessive Intellectual Disability. Archives of Iranian Medicine, 2019, 22, 461-471. | 0.2 | 0 | | 265 | Understanding the Molecular Basis of Fragile X Syndrome Using Differentiated Mesenchymal Stem
Cells Iranian Journal of Child Neurology, 2022, 16, 85-95. | 0.2 | 0 |