
Brandon Ruotolo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5307620/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	lon mobility–mass spectrometry analysis of large protein complexes. Nature Protocols, 2008, 3, 1139-1152.	5.5	973
2	Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer's disease. Nature Chemistry, 2009, 1, 326-331.	6.6	835
3	Collision Cross Sections of Proteins and Their Complexes: A Calibration Framework and Database for Gas-Phase Structural Biology. Analytical Chemistry, 2010, 82, 9557-9565.	3.2	694
4	Evidence for Macromolecular Protein Rings in the Absence of Bulk Water. Science, 2005, 310, 1658-1661.	6.0	551
5	Protein Complexes in the Gas Phase:  Technology for Structural Genomics and Proteomics. Chemical Reviews, 2007, 107, 3544-3567.	23.0	376
6	lon mobility–mass spectrometry: a new paradigm for proteomics. International Journal of Mass Spectrometry, 2005, 240, 301-315.	0.7	282
7	Mass spectrometry: come of age for structural and dynamical biology. Current Opinion in Structural Biology, 2011, 21, 641-649.	2.6	240
8	Insights into antiamyloidogenic properties of the green tea extract (â~')-epigallocatechin-3-gallate toward metal-associated amyloid-β species. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3743-3748.	3.3	221
9	Aspects of native proteins are retained in vacuum. Current Opinion in Chemical Biology, 2006, 10, 402-408.	2.8	217
10	Ion Mobility–Mass Spectrometry Reveals Long‣ived, Unfolded Intermediates in the Dissociation of Protein Complexes. Angewandte Chemie - International Edition, 2007, 46, 8001-8004.	7.2	213
11	Tandem Mass Spectrometry Reveals the Quaternary Organization of Macromolecular Assemblies. Chemistry and Biology, 2006, 13, 597-605.	6.2	206
12	Mass Measurements of Increased Accuracy Resolve Heterogeneous Populations of Intact Ribosomes. Journal of the American Chemical Society, 2006, 128, 11433-11442.	6.6	166
13	Coupling Microdroplet Microreactors with Mass Spectrometry: Reading the Contents of Single Droplets Online. Angewandte Chemie - International Edition, 2009, 48, 3665-3668.	7.2	162
14	Coupling High-Pressure MALDI with Ion Mobility/Orthogonal Time-of-Flight Mass Spectrometry. Analytical Chemistry, 2000, 72, 3965-3971.	3.2	152
15	Collision induced unfolding of isolated proteins in the gas phase: past, present, and future. Current Opinion in Chemical Biology, 2018, 42, 93-100.	2.8	151
16	lon mobility–mass spectrometry for structural proteomics. Expert Review of Proteomics, 2012, 9, 47-58.	1.3	150
17	Alternate Dissociation Pathways Identified in Charge-Reduced Protein Complex Ions. Analytical Chemistry, 2010, 82, 5363-5372.	3.2	145
18	Structural basis for the inhibition of activin signalling by follistatin. EMBO Journal, 2006, 25, 1035-1045.	3.5	141

#	Article	IF	CITATIONS
19	Gas-Phase Unfolding and Disassembly Reveals Stability Differences in Ligand-Bound Multiprotein Complexes. Chemistry and Biology, 2009, 16, 382-390.	6.2	141
20	Characterizing the resolution and accuracy of a second-generation traveling-wave ion mobility separator for biomolecular ions. Analyst, The, 2011, 136, 3534.	1.7	130
21	Collision Induced Unfolding of Intact Antibodies: Rapid Characterization of Disulfide Bonding Patterns, Glycosylation, and Structures. Analytical Chemistry, 2015, 87, 11509-11515.	3.2	129
22	Subunit Architecture of Intact Protein Complexes from Mass Spectrometry and Homology Modeling. Accounts of Chemical Research, 2008, 41, 617-627.	7.6	123
23	Integrating Ion Mobility Mass Spectrometry with Molecular Modelling to Determine the Architecture of Multiprotein Complexes. PLoS ONE, 2010, 5, e12080.	1.1	119
24	Tandem Differential Mobility Analysis-Mass Spectrometry Reveals Partial Gas-Phase Collapse of the GroEL Complex. Journal of Physical Chemistry B, 2011, 115, 3614-3621.	1.2	116
25	A Two-Site Mechanism for the Inhibition of IAPP Amyloidogenesis by Zinc. Journal of Molecular Biology, 2011, 410, 294-306.	2.0	111
26	Collisional and Coulombic Unfolding of Gasâ€Phase Proteins: High Correlation to Their Domain Structures in Solution. Angewandte Chemie - International Edition, 2014, 53, 9209-9212.	7.2	110
27	CIUSuite: A Quantitative Analysis Package for Collision Induced Unfolding Measurements of Gas-Phase Protein Ions. Analytical Chemistry, 2015, 87, 11516-11522.	3.2	101
28	Subunit Architecture of Multiprotein Assemblies Determined Using Restraints from Gas-Phase Measurements. Structure, 2009, 17, 1235-1243.	1.6	99
29	Resolution of Oligomeric Species during the Aggregation of Aβ _{1–40} Using ¹⁹ F NMR. Biochemistry, 2013, 52, 1903-1912.	1.2	97
30	An electrostatic focusing ion guide for ion mobility-mass spectrometry. International Journal of Mass Spectrometry, 2004, 239, 43-49.	0.7	92
31	Flexible, symmetry-directed approach to assembling protein cages. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8681-8686.	3.3	91
32	Bound Anions Differentially Stabilize Multiprotein Complexes in the Absence of Bulk Solvent. Journal of the American Chemical Society, 2011, 133, 11358-11367.	6.6	89
33	Distinguishing between Phosphorylated and Nonphosphorylated Peptides with Ion Mobilityâ~'Mass Spectrometry. Journal of Proteome Research, 2002, 1, 303-306.	1.8	86
34	CIUSuite 2: Next-Generation Software for the Analysis of Gas-Phase Protein Unfolding Data. Analytical Chemistry, 2019, 91, 3147-3155.	3.2	86
35	Surface-Induced Dissociation on a MALDI-Ion Mobility-Orthogonal Time-of-Flight Mass Spectrometer:Â Sequencing Peptides from an "In-Solution―Protein Digest. Analytical Chemistry, 2001, 73, 2233-2238.	3.2	83
36	Peak capacity of ion mobility mass spectrometry: the utility of varying drift gas polarizability for the separation of tryptic peptides. Journal of Mass Spectrometry, 2004, 39, 361-367.	0.7	83

#	Article	IF	CITATIONS
37	Peak capacity of ion mobility mass spectrometry:. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 782, 385-392.	1.2	82
38	Integrating mass spectrometry of intact protein complexes into structural proteomics. Proteomics, 2012, 12, 1547-1564.	1.3	82
39	Structure-mechanism-based engineering of chemical regulators targeting distinct pathological factors in Alzheimer's disease. Nature Communications, 2016, 7, 13115.	5.8	80
40	Analysis of Phosphorylated Peptides by Ion Mobility-Mass Spectrometry. Analytical Chemistry, 2004, 76, 6727-6733.	3.2	72
41	Oligonucleotide analysis with MALDI–ion-mobility–TOFMS. Analytical and Bioanalytical Chemistry, 2002, 373, 612-617.	1.9	70
42	lon mobility-mass spectrometry of intact protein–ligand complexes for pharmaceutical drug discovery and development. Current Opinion in Chemical Biology, 2013, 17, 809-817.	2.8	68
43	Ion Mobility-Mass Spectrometry Reveals the Influence of Subunit Packing and Charge on the Dissociation of Multiprotein Complexes. Analytical Chemistry, 2010, 82, 9702-9710.	3.2	66
44	Variable-Velocity Traveling-Wave Ion Mobility Separation Enhancing Peak Capacity for Data-Independent Acquisition Proteomics. Analytical Chemistry, 2017, 89, 5669-5672.	3.2	66
45	Activation State-Selective Kinase Inhibitor Assay Based on Ion Mobility-Mass Spectrometry. Analytical Chemistry, 2013, 85, 6995-7002.	3.2	65
46	A Redox-Active, Compact Molecule for Cross-Linking Amyloidogenic Peptides into Nontoxic, Off-Pathway Aggregates: In Vitro and In Vivo Efficacy and Molecular Mechanisms. Journal of the American Chemical Society, 2015, 137, 14785-14797.	6.6	65
47	Separating and visualising protein assemblies by means of preparative mass spectrometry and microscopy. Journal of Structural Biology, 2010, 172, 161-168.	1.3	64
48	A Multidimensional Analytical Comparison of Remicade and the Biosimilar Remsima. Analytical Chemistry, 2017, 89, 4838-4846.	3.2	64
49	Residual counter ions can stabilise a large protein complex in the gas phase. International Journal of Mass Spectrometry, 2010, 298, 91-98.	0.7	63
50	A study of peptide—Peptide interactions using MALDI ion mobility o-TOF and ESI mass spectrometry. Journal of the American Society for Mass Spectrometry, 2002, 13, 166-169.	1.2	61
51	Observation of Conserved Solution-Phase Secondary Structure in Gas-Phase Tryptic Peptides. Journal of the American Chemical Society, 2002, 124, 4214-4215.	6.6	60
52	A rationally designed small molecule for identifying an in vivo link between metal–amyloid-β complexes and the pathogenesis of Alzheimer's disease. Chemical Science, 2015, 6, 1879-1886.	3.7	60
53	Ion mobility-mass spectrometry applied to cyclic peptide analysis: Conformational preferences of gramicidin S and linear analogs in the gas phase. Journal of the American Society for Mass Spectrometry, 2004, 15, 870-878.	1.2	59
54	Methodology for measuring conformation of solvent-disrupted protein subunits using T-WAVE ion mobility MS: An investigation into eukaryotic initiation factors. Journal of the American Society for Mass Spectrometry, 2009, 20, 1699-1706.	1.2	54

#	Article	IF	CITATIONS
55	The structure of gas-phase bradykinin fragment 1–5 (RPPGF) ions: An ion mobility spectrometry and H/D exchange ion-molecule reaction chemistry study. Journal of the American Society for Mass Spectrometry, 2005, 16, 893-905.	1.2	53
56	Integrative Modelling Coupled with Ion Mobility Mass Spectrometry Reveals Structural Features of the Clamp Loader in Complex with Single-Stranded DNA Binding Protein. Journal of Molecular Biology, 2013, 425, 4790-4801.	2.0	51
57	Quadrupole-Time-of-Flight Mass Spectrometer Modified for Higher-Energy Dissociation Reduces Protein Assemblies to Peptide Fragments. Analytical Chemistry, 2009, 81, 1270-1274.	3.2	50
58	Bound Cations Significantly Stabilize the Structure of Multiprotein Complexes in the Gas Phase. Angewandte Chemie - International Edition, 2012, 51, 5692-5695.	7.2	50
59	Sizing Up Protein–Ligand Complexes: The Rise of Structural Mass Spectrometry Approaches in the Pharmaceutical Sciences. Annual Review of Analytical Chemistry, 2017, 10, 25-44.	2.8	50
60	Gas-phase protein assemblies: Unfolding landscapes and preserving native-like structures using noncovalent adducts. Chemical Physics Letters, 2012, 524, 1-9.	1.2	48
61	A fundamental introduction to ion mobility mass spectrometry applied to the analysis of biomolecules. Journal of Biomolecular Techniques, 2002, 13, 56-61.	0.8	48
62	Chemical Probes and Engineered Constructs Reveal a Detailed Unfolding Mechanism for a Solvent-Free Multidomain Protein. Journal of the American Chemical Society, 2017, 139, 534-540.	6.6	46
63	An Improved Calibration Approach for Traveling Wave Ion Mobility Spectrometry: Robust, High-Precision Collision Cross Sections. Analytical Chemistry, 2021, 93, 3542-3550.	3.2	44
64	Analysis of protein mixtures by matrix-assisted laser desorption ionization-ion mobility-orthogonal-time-of-flight mass spectrometry. International Journal of Mass Spectrometry, 2002, 219, 253-267.	0.7	43
65	Symmetryâ€Directed Selfâ€Assembly of a Tetrahedral Protein Cage Mediated by de Novoâ€Designed Coiled Coils. ChemBioChem, 2017, 18, 1888-1892.	1.3	42
66	Ion Mobility-Mass Spectrometry Reveals Conformational Changes in Charge Reduced Multiprotein Complexes. Journal of the American Society for Mass Spectrometry, 2011, 22, 1690-8.	1.2	39
67	Collisional unfolding of multiprotein complexes reveals cooperative stabilization upon ligand binding. Protein Science, 2015, 24, 1272-1281.	3.1	39
68	Enhanced Collision Induced Unfolding and Electron Capture Dissociation of Native-like Protein Ions. Analytical Chemistry, 2020, 92, 15489-15496.	3.2	38
69	Resolution equations for high-field ion mobility. Journal of the American Society for Mass Spectrometry, 2004, 15, 1320-1324.	1.2	37
70	Reactivity of Diphenylpropynone Derivatives Toward Metal-Associated Amyloid-Î ² Species. Inorganic Chemistry, 2012, 51, 12959-12967.	1.9	36
71	Biosimilarity under stress: A forced degradation study of Remicade® and Remsimaâ,,¢. MAbs, 2017, 9, 1197-1209.	2.6	36
72	Optimization of a matrix-assisted laser desorption ionization-ion mobility-surface-induced dissociation-orthogonal-time-of-flight mass spectrometer: simultaneous acquisition of multiple correlated MS 1 and MS 2 spectra. International Journal of Mass Spectrometry, 2001, 212, 519-533.	0.7	35

Brandon Ruotolo

#	Article	IF	CITATIONS
73	The influence and utility of varying field strength for the separation of tryptic peptides by ion mobility-mass spectrometry. Journal of the American Society for Mass Spectrometry, 2005, 16, 158-165.	1.2	35
74	Gas-Phase Conformations of Proteolytically Derived Protein Fragments:  Influence of Solvent on Peptide Conformation. Journal of Physical Chemistry B, 2004, 108, 15321-15331.	1.2	34
75	Characterization of Symmetric Complexes of Nerve Growth Factor and the Ectodomain of the Pan-neurotrophin Receptor, p75NTR. Journal of Biological Chemistry, 2005, 280, 33453-33460.	1.6	34
76	Coming to Grips with Ambiguity: Ion Mobility-Mass Spectrometry for Protein Quaternary Structure Assignment. Journal of the American Society for Mass Spectrometry, 2017, 28, 1991-2000.	1.2	33
77	A Modified Drift Tube Ion Mobility-Mass Spectrometer for Charge-Multiplexed Collision-Induced Unfolding. Analytical Chemistry, 2019, 91, 8137-8146.	3.2	31
78	Mass Spectrometry Methods for Measuring Protein Stability. Chemical Reviews, 2022, 122, 7690-7719.	23.0	31
79	Exploring the reactivity of flavonoid compounds with metal-associated amyloid-Î ² species. Dalton Transactions, 2012, 41, 6558.	1.6	30
80	Amyloid-β–neuropeptide interactions assessed by ion mobility-mass spectrometry. Physical Chemistry Chemical Physics, 2013, 15, 8952.	1.3	30
81	Evidence for a 1,3-Dipolar Cyclo-addition Mechanism in the Decarboxylation of Phenylacrylic Acids Catalyzed by Ferulic Acid Decarboxylase. Journal of the American Chemical Society, 2017, 139, 10972-10975.	6.6	30
82	Collision induced unfolding detects subtle differences in intact antibody glycoforms and associated fragments. International Journal of Mass Spectrometry, 2018, 425, 1-9.	0.7	30
83	The growing role of structural mass spectrometry in the discovery and development of therapeutic antibodies. Analyst, The, 2018, 143, 2459-2468.	1.7	29
84	Collision Induced Unfolding Classifies Ligands Bound to the Integral Membrane Translocator Protein. Analytical Chemistry, 2019, 91, 15469-15476.	3.2	29
85	Bicelles Rich in both Sphingolipids and Cholesterol and Their Use in Studies of Membrane Proteins. Journal of the American Chemical Society, 2020, 142, 12715-12729.	6.6	29
86	A Monte Carlo approach for assessing the specificity of protein oligomers observed in nano-electrospray mass spectra. International Journal of Mass Spectrometry, 2009, 283, 169-177.	0.7	28
87	Effects of hydroxyl group variations on a flavonoid backbone toward modulation of metal-free and metal-induced amyloid-1 ² aggregation. Inorganic Chemistry Frontiers, 2016, 3, 381-392.	3.0	28
88	Quantitative collisionâ€induced unfolding differentiates model antibody–drug conjugates. Protein Science, 2019, 28, 598-608.	3.1	26
89	Structural and Mechanistic Insights into Development of Chemical Tools to Control Individual and Interâ€Related Pathological Features in Alzheimer's Disease. Chemistry - A European Journal, 2017, 23, 2706-2715.	1.7	25
90	A Structural Model of the Urease Activation Complex Derived from Ion Mobility-Mass Spectrometry and Integrative Modeling. Structure, 2018, 26, 599-606.e3.	1.6	25

Brandon Ruotolo

#	Article	IF	CITATIONS
91	SERF engages in a fuzzy complex that accelerates primary nucleation of amyloid proteins. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23040-23049.	3.3	25
92	Native Mass Spectrometry, Ion Mobility, Electron-Capture Dissociation, and Modeling Provide Structural Information for Gas-Phase Apolipoprotein E Oligomers. Journal of the American Society for Mass Spectrometry, 2019, 30, 876-885.	1.2	25
93	Evaluation of de novo-designed coiled coils as off-the-shelf components for protein assembly. Molecular Systems Design and Engineering, 2017, 2, 140-148.	1.7	22
94	Multifaceted assessment of rituximab biosimilarity: The impact of glycan microheterogeneity on Fc function. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 146, 111-124.	2.0	21
95	A Single Subunit Directs the Assembly of the Escherichia coli DNA Sliding Clamp Loader. Structure, 2010, 18, 285-292.	1.6	20
96	Mechanism of the small ATP-independent chaperone Spy is substrate specific. Nature Communications, 2021, 12, 851.	5.8	20
97	Ion Mobility-Mass Spectrometry Differentiates Protein Quaternary Structures Formed in Solution and in Electrospray Droplets. Analytical Chemistry, 2015, 87, 6808-6813.	3.2	19
98	Importance of the Dimethylamino Functionality on a Multifunctional Framework for Regulating Metals, Amyloid-β, and Oxidative Stress in Alzheimer's Disease. Inorganic Chemistry, 2016, 55, 5000-5013.	1.9	19
99	Ion Mobility-Mass Spectrometry Reveals Highly-Compact Intermediates in the Collision Induced Dissociation of Charge-Reduced Protein Complexes. Journal of the American Society for Mass Spectrometry, 2016, 27, 41-49.	1.2	19
100	Fixed-Charge Trimethyl Pyrilium Modification for Enabling Enhanced Top-Down Mass Spectrometry Sequencing of Intact Protein Complexes. Analytical Chemistry, 2018, 90, 2756-2764.	3.2	19
101	Assessment of biosimilarity under native and heat-stressed conditions: rituximab, bevacizumab, and trastuzumab originators and biosimilars. Analytical and Bioanalytical Chemistry, 2020, 412, 763-775.	1.9	19
102	Hofmeister Salts Recover a Misfolded Multiprotein Complex for Subsequent Structural Measurements in the Gas Phase. Angewandte Chemie - International Edition, 2013, 52, 8329-8332.	7.2	18
103	Collision induced unfolding and dissociation differentiates ATP-competitive from allosteric protein tyrosine kinase inhibitors. International Journal of Mass Spectrometry, 2018, 427, 151-156.	0.7	18
104	Ion mobility–mass spectrometry reveals the role of peripheral myelin protein dimers in peripheral neuropathy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
105	Pervasive Charge Solvation Permeates Native-like Protein Ions and Dramatically Influences Top-down Sequencing Data. Journal of the American Chemical Society, 2020, 142, 6750-6760.	6.6	15
106	Traveling-wave ion mobility-mass spectrometry reveals additional mechanistic details in the stabilization of protein complex ions through tuned salt additives. International Journal for Ion Mobility Spectrometry, 2013, 16, 41-50.	1.4	14
107	Dramatically stabilizing multiprotein complex structure in the absence of bulk water using tuned Hofmeister salts. Faraday Discussions, 2013, 160, 371-388.	1.6	14
108	Ion Mobility-Mass Spectrometry Analysis of Cross-Linked Intact Multiprotein Complexes: Enhanced Gas-Phase Stabilities and Altered Dissociation Pathways. Analytical Chemistry, 2016, 88, 5290-5298.	3.2	14

#	Article	IF	CITATIONS
109	Analysis of a Soluble (UreD:UreF:UreG)2 Accessory Protein Complex and Its Interactions with Klebsiella aerogenes Urease by Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2013, 24, 1328-1337.	1.2	13
110	Ion mobility-mass spectrometry of charge-reduced protein complexes reveals general trends in the collisional ejection of compact subunits. Analyst, The, 2015, 140, 7020-7029.	1.7	13
111	Minor Structural Variations of Small Molecules Tune Regulatory Activities toward Pathological Factors in Alzheimer's Disease. ChemMedChem, 2017, 12, 1828-1838.	1.6	13
112	Collision-Induced Unfolding Reveals Unique Fingerprints for Remote Protein Interaction Sites in the KIX Regulation Domain. Journal of the American Society for Mass Spectrometry, 2019, 30, 94-102.	1.2	13
113	Infliximab Biosimilars in the Age of Personalized Medicine. Trends in Biotechnology, 2018, 36, 987-992.	4.9	12
114	Mechanistic insights into accelerated α-synuclein aggregation mediated by human microbiome-associated functional amyloids. Journal of Biological Chemistry, 2022, 298, 102088.	1.6	12
115	An Algorithm for Building Multi-State Classifiers Based on Collision-Induced Unfolding Data. Analytical Chemistry, 2019, 91, 10407-10412.	3.2	11
116	Affinity-Based Selectivity Profiling of an In-Class Selective Competitive Inhibitor of Acyl Protein Thioesterase 2. ACS Medicinal Chemistry Letters, 2017, 8, 215-220.	1.3	10
117	IMTBX and Grppr: Software for Top-Down Proteomics Utilizing Ion Mobility-Mass Spectrometry. Analytical Chemistry, 2018, 90, 2369-2375.	3.2	10
118	Collision-Induced Unfolding Differentiates Functional Variants of the KCNQ1 Voltage Sensor Domain. Journal of the American Society for Mass Spectrometry, 2020, 31, 2348-2355.	1.2	10
119	Collision-Induced Unfolding Reveals Stability Differences in Infliximab Therapeutics under Native and Heat Stress Conditions. Analytical Chemistry, 2021, 93, 16166-16174.	3.2	10
120	Ion Mobility–Mass Spectrometry Reveals the Structures and Stabilities of Biotherapeutic Antibody Aggregates. Analytical Chemistry, 2022, 94, 6745-6753.	3.2	10
121	Characterization of a [4Fe-4S]-dependent LarE sulfur insertase that facilitates nickel-pincer nucleotide cofactor biosynthesis in Thermotoga maritima. Journal of Biological Chemistry, 2022, 298, 102131.	1.6	10
122	Ion Mobility-Mass Spectrometry Reveals a Dipeptide That Acts as a Molecular Chaperone for Amyloid β. ACS Chemical Biology, 2017, 12, 1113-1120.	1.6	9
123	Robotically Assisted Titration Coupled to Ion Mobility-Mass Spectrometry Reveals the Interface Structures and Analysis Parameters Critical for Multiprotein Topology Mapping. Analytical Chemistry, 2013, 85, 11360-11368.	3.2	8
124	Collision Cross Sections for Native Proteomics: Challenges and Opportunities. Journal of Proteome Research, 2022, 21, 2-8.	1.8	8
125	Comparing Selected-Ion Collision Induced Unfolding with All Ion Unfolding Methods for Comprehensive Protein Conformational Characterization. Journal of the American Society for Mass Spectrometry, 2022, 33, 944-951.	1.2	8
126	Hydrogen/deuterium exchange-mass spectrometry analysis of high concentration biotherapeutics: application to phase-separated antibody formulations. MAbs, 2019, 11, 779-788.	2.6	7

#	Article	IF	CITATIONS
127	Complex Formed between Intramembrane Metalloprotease SpoIVFB and Its Substrate, Pro-σK. Journal of Biological Chemistry, 2016, 291, 10347-10362.	1.6	6
128	Kinetic Analysis of Transient Intermediates in the Mechanism of Prenyl-Flavin-Dependent Ferulic Acid Decarboxylase. Biochemistry, 2021, 60, 125-134.	1.2	6
129	A Semi-Empirical Framework for Interpreting Traveling Wave Ion Mobility Arrival Time Distributions. Journal of the American Society for Mass Spectrometry, 2019, 30, 956-966.	1.2	5
130	Biochemical characterization of the interaction between KRAS and Argonaute 2. Biochemistry and Biophysics Reports, 2022, 29, 101191.	0.7	5
131	Ion Mobility Mass Spectrometry. Analyst, The, 2015, 140, 6772-6774.	1.7	4
132	A Novel Ion Pseudo-trapping Phenomenon within Traveling Wave Ion Guides. Journal of the American Society for Mass Spectrometry, 2020, 31, 880-887.	1.2	4
133	Oligomerization, trans-reduction, and instability of mutant NOTCH3 in inherited vascular dementia. Communications Biology, 2022, 5, 331.	2.0	4
134	Development of a sequential injection system in the capillary format for determinations of the IpaC protein. Analytica Chimica Acta, 2000, 409, 3-8.	2.6	3
135	Verteporfin is a substrate-selective γ-secretase inhibitor that binds the amyloid precursor protein transmembrane domain. Journal of Biological Chemistry, 2022, 298, 101792.	1.6	3
136	Ion mobility-mass spectrometry reveals evidence of specific complex formation between human histone deacetylase 8 and poly-r(C)-binding protein 1. International Journal of Mass Spectrometry, 2017, 420, 9-15.	0.7	2
137	Bicarbonate buffers can promote crosslinking and alternative gas-phase dissociation pathways for multiprotein complexes. International Journal of Mass Spectrometry, 2021, 469, 116687.	0.7	1
138	Ion mobility-mass spectrometry applied to cyclic peptide analysis: conformational preferences of gramicidin S and linear analogs in the gas phase. Journal of the American Society for Mass Spectrometry, 2004, 15, 870-878.	1.2	0