
Karim Mekhail

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5307533/publications.pdf Version: 2024-02-01

Клрім Мекнліі

#	Article	IF	CITATIONS
1	Integration of DNA damage responses with dynamic spatial genome organization. Trends in Genetics, 2022, 38, 290-304.	6.7	11
2	RNF168 regulates R-loop resolution and genomic stability in BRCA1/2-deficient tumors. Journal of Clinical Investigation, 2021, 131, .	8.2	38
3	Interphase microtubules in nuclear organization and genome maintenance. Trends in Cell Biology, 2021, 31, 721-731.	7.9	20
4	Mobility and Repair of Damaged DNA: Random or Directed?. Trends in Cell Biology, 2020, 30, 144-156.	7.9	18
5	Nucleolar RNA polymerase II drives ribosome biogenesis. Nature, 2020, 585, 298-302.	27.8	135
6	RNA-cDNA hybrids mediate transposition via different mechanisms. Scientific Reports, 2020, 10, 16034.	3.3	1
7	DNA repair by Rad52 liquid droplets. Nature Communications, 2020, 11, 695.	12.8	103
8	Biomolecular condensates as arbiters of biochemical reactions inside the nucleus. Communications Biology, 2020, 3, 773.	4.4	59
9	Phase Separation as a Melting Pot for DNA Repeats. Trends in Genetics, 2019, 35, 589-600.	6.7	21
10	Roles for Non-coding RNAs in Spatial Genome Organization. Frontiers in Cell and Developmental Biology, 2019, 7, 336.	3.7	14
11	Catch the live show: Visualizing damaged DNA in vivo. Methods, 2018, 142, 24-29.	3.8	4
12	Assays to Study Repair of Inducible DNA Double-Strand Breaks at Telomeres. Methods in Molecular Biology, 2018, 1672, 375-385.	0.9	2
13	Conserved Pbp1/Ataxin-2 regulates retrotransposon activity and connects polyglutamine expansion-driven protein aggregation to lifespan-controlling rDNA repeats. Communications Biology, 2018, 1, 187.	4.4	10
14	Nuclear microtubule filaments mediate non-linear directional motion of chromatin and promote DNA repair. Nature Communications, 2018, 9, 2567.	12.8	72
15	Defining the Damaged DNA Mobility Paradox as Revealed by the Study of Telomeres, DSBs, Microtubules and Motors. Frontiers in Genetics, 2018, 9, 95.	2.3	12
16	Repetitive DNA loci and their modulation by the non-canonical nucleic acid structures R-loops and G-quadruplexes. Nucleus, 2017, 8, 162-181.	2.2	27
17	Non-Coding RNA Molecules Connect Calorie Restriction and Lifespan. Journal of Molecular Biology, 2017, 429, 3196-3214.	4.2	15
18	Ataxin-2: From RNA Control to Human Health and Disease. Genes, 2017, 8, 157.	2.4	65

KARIM MEKHAIL

#	Article	IF	CITATIONS
19	Editorial: Non-coding RNA Regulation: Lessons from Model Organisms and Impact on Human Health. Frontiers in Genetics, 2016, 7, 49.	2.3	2
20	Intersection of calorie restriction and magnesium in the suppression of genome-destabilizing RNA–DNA hybrids. Nucleic Acids Research, 2016, 44, 8870-8884.	14.5	25
21	Non-coding RNA in neural function, disease, and aging. Frontiers in Genetics, 2015, 6, 87.	2.3	78
22	R-loops highlight the nucleus in ALS. Nucleus, 2015, 6, 23-29.	2.2	43
23	Perinuclear tethers license telomeric DSBs for a broad kinesin- and NPC-dependent DNA repair process. Nature Communications, 2015, 6, 7742.	12.8	76
24	Repair by a molecular DNA ambulance. Oncotarget, 2015, 6, 19358-19359.	1.8	3
25	The fine line between lifespan extension and shortening in response to caloric restriction. Nucleus, 2014, 5, 56-65.	2.2	27
26	Roles for Pbp1 and Caloric Restriction in Genome and Lifespan Maintenance via Suppression of RNA-DNA Hybrids. Developmental Cell, 2014, 30, 177-191.	7.0	57
27	Enforcement of a lifespanâ€sustaining distribution of Sir2 between telomeres, matingâ€type loci, and <scp>rDNA</scp> repeats by Rif1. Aging Cell, 2013, 12, 67-75.	6.7	29
28	Effects of Perinuclear Chromosome Tethers in the Telomeric URA3/5FOA System Reflect Changes to Gene Silencing and not Nucleotide Metabolism. Frontiers in Genetics, 2012, 3, 144.	2.3	6
29	Perinuclear Cohibin Complexes Maintain Replicative Life Span via Roles at Distinct Silent Chromatin Domains. Developmental Cell, 2011, 20, 867-879.	7.0	71
30	Cohesin and related coiled-coil domain-containing complexes physically and functionally connect the dots across the genome. Cell Cycle, 2011, 10, 2669-2682.	2.6	27
31	The nuclear envelope in genome organization, expression and stability. Nature Reviews Molecular Cell Biology, 2010, 11, 317-328.	37.0	248
32	Regulation of Spo12 Phosphorylation and Its Essential Role in the FEAR Network. Current Biology, 2009, 19, 449-460.	3.9	39
33	Role for perinuclear chromosome tethering in maintenance of genome stability. Nature, 2008, 456, 667-670.	27.8	215
34	eEF1A Is a Novel Component of the Mammalian Nuclear Protein Export Machinery. Molecular Biology of the Cell, 2008, 19, 5296-5308.	2.1	72
35	Cancer-Causing Mutations in a Novel Transcription-Dependent Nuclear Export Motif of VHL Abrogate Oxygen-Dependent Degradation of Hypoxia-Inducible Factor. Molecular and Cellular Biology, 2008, 28, 302-314.	2.3	16
36	Identification of a Common Subnuclear Localization Signal. Molecular Biology of the Cell, 2007, 18, 3966-3977.	2.1	36

3

KARIM MEKHAIL

#	Article	IF	CITATIONS
37	Restriction of rRNA Synthesis by VHL Maintains Energy Equilibrium under Hypoxia. Cell Cycle, 2006, 5, 2401-2413.	2.6	43
38	Regulation of ubiquitin ligase dynamics by the nucleolus. Journal of Cell Biology, 2005, 170, 733-744.	5.2	79
39	Silencing of Epidermal Growth Factor Receptor Suppresses Hypoxia-Inducible Factor-2–Driven VHLâ^'/â^' Renal Cancer. Cancer Research, 2005, 65, 5221-5230.	0.9	329
40	Oxygen Sensing by H+: Implications for HIF and Hypoxic Cell Memory. Cell Cycle, 2004, 3, 1025-1027.	2.6	30
41	HIF activation by pH-dependent nucleolar sequestration of VHL. Nature Cell Biology, 2004, 6, 642-647.	10.3	242
42	Oxygen sensing by H+: implications for HIF and hypoxic cell memory. Cell Cycle, 2004, 3, 1027-9.	2.6	15
43	Hypoxia Inducible Factor Activates the Transforming Growth Factor-α/Epidermal Growth Factor Receptor Growth Stimulatory Pathway in VHL-/- Renal Cell Carcinoma Cells. Journal of Biological Chemistry, 2003, 278, 44966-44974	3.4	165