Katharina Lueckerath

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/530749/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Response to Combined Peptide Receptor Radionuclide Therapy and Checkpoint Immunotherapy with Ipilimumab Plus Nivolumab in Metastatic Merkel Cell Carcinoma. Journal of Nuclear Medicine, 2022, 63, 396-398.	2.8	18
2	Pitfalls and Common Findings in ⁶⁸ Ga-FAPI PET: A Pictorial Analysis. Journal of Nuclear Medicine, 2022, 63, 890-896.	2.8	61
3	Administration Routes for SSTR-/PSMA- and FAP-Directed Theranostic Radioligands in Mice. Journal of Nuclear Medicine, 2022, 63, 1357-1363.	2.8	1
4	Safety and Efficacy of 90Y-FAPI-46 Radioligand Therapy in Patients with Advanced Sarcoma and Other Cancer Entities. Clinical Cancer Research, 2022, 28, 4346-4353.	3.2	45
5	Mechanisms of Resistance to Prostate-Specific Membrane Antigen-Targeted Radioligand Therapy in a Mouse Model of Prostate Cancer. Journal of Nuclear Medicine, 2021, 62, jnumed.120.256263.	2.8	22
6	68Ga-FAPi-46 diffuse bilateral breast uptake in a patient with cervical cancer after hormonal stimulation. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 924-926.	3.3	19
7	Immune-Checkpoint Blockade Enhances ²²⁵ Ac-PSMA617 Efficacy in a Mouse Model of Prostate Cancer. Journal of Nuclear Medicine, 2021, 62, 228-231.	2.8	44
8	PSA-Targeted Alpha-, Beta-, and Positron-Emitting Immunotheranostics in Murine Prostate Cancer Models and Nonhuman Primates. Clinical Cancer Research, 2021, 27, 2050-2060.	3.2	13
9	Imaging Inflammation with Positron Emission Tomography. Biomedicines, 2021, 9, 212.	1.4	24
10	Drug and molecular radiotherapy combinations for metastatic castration resistant prostate cancer. Nuclear Medicine and Biology, 2021, 96-97, 101-111.	0.3	10
11	Enzalutamide Enhances PSMA Expression of PSMA-Low Prostate Cancer. International Journal of Molecular Sciences, 2021, 22, 7431.	1.8	25
12	Genetic signature of prostate cancer mouse models resistant to optimized hK2 targeted α-particle therapy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15172-15181.	3.3	16
13	Targeted alpha therapy in a systemic mouse model of prostate cancer - a feasibility study. Theranostics, 2020, 10, 2612-2620.	4.6	15
14	Investigating PSMA-Targeted Radioligand Therapy Efficacy as a Function of Cellular PSMA Levels and Intratumoral PSMA Heterogeneity. Clinical Cancer Research, 2020, 26, 2946-2955.	3.2	71
15	Abstract 5345: Heterogeneous tumor PSMA expression represents a resistance mechanism to PSMA-targeted radioligand therapy. , 2020, , .		0
16	717â€AMG 160, a prostate-specific membrane antigen (PSMA)-targeted BiTE [®] immuno-oncology therapy, is active in models of advanced prostate cancer that are resistant to radioligand therapy. , 2020, , .		0
17	Potential influence of concomitant chemotherapy on <scp>CXCR</scp> 4 expression in receptor directed endoradiotherapy. British Journal of Haematology, 2019, 184, 440-443.	1.2	25
18	Prognostic value of [18F]FDG-PET/CT in multiple myeloma patients before and after allogeneic hematopoietic cell transplantation. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 1694-1704.	3.3	23

#	Article	IF	CITATIONS
19	Detection Threshold and Reproducibility of ⁶⁸ Ga-PSMA11 PET/CT in a Mouse Model of Prostate Cancer. Journal of Nuclear Medicine, 2018, 59, 1392-1397.	2.8	21
20	[¹¹ C]Methionine emerges as a new biomarker for tracking active myeloma lesions. British Journal of Haematology, 2018, 181, 701-703.	1.2	13
21	Preclinical evaluation of PSMA expression in response to androgen receptor blockade for theranostics in prostate cancer. EJNMMI Research, 2018, 8, 96.	1.1	58
22	The gross picture: intraindividual tumour heterogeneity in a patient with nonsecretory multiple myeloma. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 1097-1098.	3.3	11
23	Establishing ¹⁷⁷ Lu-PSMA-617 Radioligand Therapy in a Syngeneic Model of Murine Prostate Cancer. Journal of Nuclear Medicine, 2017, 58, 1786-1792.	2.8	35
24	Chemokine receptor $\hat{a} \in \hat{C}$ Directed imaging and therapy. Methods, 2017, 130, 63-71.	1.9	45
25	[⁶⁸ Ga]Pentixafor-PET/CT for imaging of chemokine receptor CXCR4 expression in multiple myeloma - Comparison to [¹⁸ F]FDG and laboratory values. Theranostics, 2017, 7, 205-212.	4.6	138
26	¹¹ C-Methionine-PET in Multiple Myeloma: A Combined Study from Two Different Institutions. Theranostics, 2017, 7, 2956-2964.	4.6	63
27	CXCR4-directed endoradiotherapy induces high response rates in extramedullary relapsed Multiple Myeloma. Theranostics, 2017, 7, 1589-1597.	4.6	102
28	Targeting CXCR4 with [68Ga]Pentixafor: a suitable theranostic approach in pleural mesothelioma?. Oncotarget, 2017, 8, 96732-96737.	0.8	17
29	¹¹ C-Methionine-PET in Multiple Myeloma: Correlation with Clinical Parameters and Bone Marrow Involvement. Theranostics, 2016, 6, 254-261.	4.6	80
30	⁶⁸ Ga-Pentixafor-PET/CT for Imaging of Chemokine Receptor 4 Expression in Glioblastoma. Theranostics, 2016, 6, 428-434.	4.6	91
31	First-in-Human Experience of CXCR4-Directed Endoradiotherapy with ¹⁷⁷ Lu- and ⁹⁰ Y-Labeled Pentixather in Advanced-Stage Multiple Myeloma with Extensive Intra- and Extramedullary Disease. Journal of Nuclear Medicine, 2016, 57, 248-251.	2.8	201
32	Human Organotypic Lung Tumor Models: Suitable For Preclinical 18F-FDG PET-Imaging. PLoS ONE, 2016, 11, e0160282.	1.1	9
33	[68Ga]Pentixafor-PET/CT for imaging of chemokine receptor 4 expression in small cell lung cancer - initial experience. Oncotarget, 2016, 7, 9288-9295.	0.8	92
34	Somatostatin receptor expression in small cell lung cancer as a prognostic marker and a target for peptide receptor radionuclide therapy. Oncotarget, 2016, 7, 20033-20040.	0.8	41
35	<i>In vivo</i> molecular imaging of chemokine receptor <scp>CXCR</scp> 4 expression in patients with advanced multiple myeloma. EMBO Molecular Medicine, 2015, 7, 477-487.	3.3	180
36	Tumor-Associated Macrophages in Glioblastoma Multiforme—A Suitable Target for Somatostatin Receptor-Based Imaging and Therapy?. PLoS ONE, 2015, 10, e0122269.	1.1	31

KATHARINA LUECKERATH

#	Article	IF	CITATIONS
37	Prediction of clinically relevant hyperkalemia in patients treated with peptide receptor radionuclide therapy. EJNMMI Research, 2014, 4, 74.	1.1	9
38	Influence of the amount of co-infused amino acids on post-therapeutic potassium levels in peptide receptor radionuclide therapy. EJNMMI Research, 2014, 4, 46.	1.1	8
39	FDG PET/CT Depicts Cutaneous Plasmocytoma. Clinical Nuclear Medicine, 2014, 39, 910-911.	0.7	6
40	18FDC-PET/CT for prognostic stratification of patients with multiple myeloma relapse after stem cell transplantation. Oncotarget, 2014, 5, 7381-7391.	0.8	56
41	[68Ga]Pentixafor: A Novel PET Tracer for Imaging CXCR4 Status in Patients with Multiple Myeloma. Blood, 2014, 124, 2014-2014.	0.6	3
42	Targeting Paraprotein Biosynthesis for Non-Invasive Characterization of Myeloma Biology. PLoS ONE, 2013, 8, e84840.	1.1	28
43	Nano-coating protects biofunctional materials. Materials Today, 2012, 15, 394-404.	8.3	14
44	Immune modulation by Fas ligand reverse signaling: lymphocyte proliferation is attenuated by the intracellular Fas ligand domain. Blood, 2011, 117, 519-529.	0.6	26
45	Runx2 is expressed in human glioma cells and mediates the expression of galectinâ€3. Journal of Neuroscience Research, 2008, 86, 2450-2461.	1.3	56
46	The impact of 177Lu-octreotide therapy on 99mTc-MAG3 clearance is not predictive for late nephropathy. Oncotarget, 0, 7, 41233-41241.	0.8	16
47	CXCR4 expression of multiple myeloma as a dynamic process: influence of therapeutic agents. Leukemia and Lymphoma, 0, , 1-10.	0.6	Ο